Design, Synthesis, and Biological Evaluation of 3,4-Dihydroquinolin-2(1H)-one and 1,2,3,4-Tetrahydroquinoline-Based Selective Human Neuronal Nitric Oxide Synthase (nNOS) Inhibitors

Neuronal nitric oxide synthase (nNOS) inhibitors are effective in preclinical models of many neurological disorders. In this study, two related series of compounds, 3,4-dihydroquinolin-2(1H)-one and 1,2,3,4-tetrahydroquinoline, containing a 6-substituted thiophene amidine group were synthesized and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2011-08, Vol.54 (15), p.5562-5575
Hauptverfasser: Ramnauth, Jailall, Speed, Joanne, Maddaford, Shawn P, Dove, Peter, Annedi, Subhash C, Renton, Paul, Rakhit, Suman, Andrews, John, Silverman, Sarah, Mladenova, Gabriela, Zinghini, Salvatore, Nair, Sheela, Catalano, Concettina, Lee, David K.H, De Felice, Milena, Porreca, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neuronal nitric oxide synthase (nNOS) inhibitors are effective in preclinical models of many neurological disorders. In this study, two related series of compounds, 3,4-dihydroquinolin-2(1H)-one and 1,2,3,4-tetrahydroquinoline, containing a 6-substituted thiophene amidine group were synthesized and evaluated as inhibitors of human nitric oxide synthase (NOS). A structure–activity relationship (SAR) study led to the identification of a number of potent and selective nNOS inhibitors. Furthermore, a few representative compounds were shown to possess druglike properties, features that are often difficult to achieve when designing nNOS inhibitors. Compound (S)-35, with excellent potency and selectivity for nNOS, was shown to fully reverse thermal hyperalgesia when given to rats at a dose of 30 mg/kg intraperitonieally (ip) in the L5/L6 spinal nerve ligation model of neuropathic pain (Chung model). In addition, this compound reduced tactile hyperesthesia (allodynia) after oral administration (30 mg/kg) in a rat model of dural inflammation relevant to migraine pain.
ISSN:0022-2623
1520-4804
DOI:10.1021/jm200648s