Complement Regulatory Protein Factor H Is a Soluble Prion Receptor That Potentiates Peripheral Prion Pathogenesis

Several complement proteins exacerbate prion disease, including C3, C1q, and CD21/35. These proteins of the complement cascade likely increase uptake, trafficking, and retention of prions in the lymphoreticular system, hallmark sites of early prion propagation. Complement regulatory protein factor H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2017-12, Vol.199 (11), p.3821-3827
Hauptverfasser: Kane, Sarah J, Farley, Taylor K, Gordon, Elizabeth O, Estep, Joshua, Bender, Heather R, Moreno, Julie A, Bartz, Jason, Telling, Glenn C, Pickering, Matthew C, Zabel, Mark D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Several complement proteins exacerbate prion disease, including C3, C1q, and CD21/35. These proteins of the complement cascade likely increase uptake, trafficking, and retention of prions in the lymphoreticular system, hallmark sites of early prion propagation. Complement regulatory protein factor H (fH) binds modified host proteins and lipids to prevent C3b deposition and, thus, autoimmune cell lysis. Previous reports show that fH binds various conformations of the cellular prion protein, leading us to question the role of fH in prion disease. In this article, we report that transgenic mice lacking alleles exhibit delayed peripheral prion accumulation, replication, and pathogenesis and onset of terminal disease in a gene-dose manner. We also report a biophysical interaction between purified fH and prion rods enriched from prion-diseased brain. fH also influences prion deposition in brains of infected mice. We conclude from these data and previous findings that the interplay between complement and prions likely involves a complex balance of prion sequestration and destruction via local tissue macrophages, prion trafficking by B and dendritic cells within the lymphoreticular system, intranodal prion replication by B and follicular dendritic cells, and potential prion strain selection by CD21/35 and fH. These findings reveal a novel role for complement-regulatory proteins in prion disease.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.1701100