Photoacoustic stimulation promotes the osteogenic differentiation of bone mesenchymal stem cells to enhance the repair of bone defect

The aim of this study was to evaluate the direct photoacoustic (PA) effect on bone marrow mesenchymal stem cells (BMSCs) which is a key cell source for osteogenesis. As scaffold is also an indispensable element for tissue regeneration, here we firstly fabricated a composited sheet using polylactic-c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-11, Vol.7 (1), p.15842-14, Article 15842
Hauptverfasser: Huang, Zebin, Xu, Jiankun, Chen, Jiebin, Chen, Hongjiang, Wang, Hailong, Huang, Zhonglian, Chen, Youbin, Lu, Xiaolin, Lu, Fushen, Hu, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this study was to evaluate the direct photoacoustic (PA) effect on bone marrow mesenchymal stem cells (BMSCs) which is a key cell source for osteogenesis. As scaffold is also an indispensable element for tissue regeneration, here we firstly fabricated a composited sheet using polylactic-co-glycolic acid (PLGA) mixing with graphene oxide (GO). BMSCs were seeded on the PLGA-GO sheets and received PA treatment in vitro for 3, 9 and 15 days, respectively. Then the BMSCs were harvested and subjected to assess alkaline phosphatase (ALP) activity, calcium content and osteopontin (OPN) on 3, 9 and 15 days. For in vivo study, PLGA-GO sheet seeded with BMSCs after in vitro PA stimulation for 9 days were implanted to repair the bone defect established in the femoral mid-shaft of Sprague-Dawley rat. PLGA-GO group with PA pretreatment showed promising outcomes in terms of the expression of ALP, OPN, and calcium content, thus enhanced the repair of bone defect. In conclusion, we have developed an alternative approach to enhance the repair of bone defect by making good use of the beneficial effect of PA.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-15879-4