Histone deacetylase 6 inhibition counteracts the epithelial-mesenchymal transition of peritoneal mesothelial cells and prevents peritoneal fibrosis

The role of histone deacetylase 6 (HDAC6) in peritoneal fibrosis remains unknown. In this study, we examined the effect of HDAC6 inhibition on the epithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells and development of peritoneal fibrosis. Treatment with tubastatin A, a highly sel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncotarget 2017-10, Vol.8 (51), p.88730-88750
Hauptverfasser: Xu, Liuqing, Liu, Na, Gu, Hongwei, Wang, Hongrui, Shi, Yingfeng, Ma, Xiaoyan, Ma, Shuchen, Ni, Jun, Tao, Min, Qiu, Andong, Zhuang, Shougang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The role of histone deacetylase 6 (HDAC6) in peritoneal fibrosis remains unknown. In this study, we examined the effect of HDAC6 inhibition on the epithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells and development of peritoneal fibrosis. Treatment with tubastatin A, a highly selective HDAC6 inhibitor, or silencing of HDAC6 with siRNA inhibited transforming growth factor β1-induced EMT, as evidenced by decreased expression of α-smooth muscle actin, collagen I and preserved expression of E-cadherin in cultured human peritoneal mesothelial cells. In a mouse model of peritoneal fibrosis induced by high glucose dialysate, administration of TA prevented thickening of the submesothelial region and decreased expression of collagen I and α-SMA. Mechanistically, tubastatin A treatment inhibited expression of TGF-β1 and phosphorylation of Smad-3, epidermal growth factor receptor, STAT3, and NF-κBp65. HDAC6 inhibition also suppressed production of multiple inflammatory cytokines/chemokines and reduced the infiltration of macrophages to the injured peritoneum. Moreover, tubastatin A was effective in inhibiting peritoneal increase of CD31(+) blood vessels and expression of vascular endothelial growth factor in the injured peritoneum. Collectively, these results suggest that HDAC6 inhibition can attenuate peritoneal fibrosis by inhibiting multiple pro-fibrotic signaling pathways, EMT, inflammation and blood vessel formation.
ISSN:1949-2553
1949-2553
DOI:10.18632/oncotarget.20982