Nicotinamide mononucleotide (NMN) supplementation ameliorates the impact of maternal obesity in mice: comparison with exercise

Maternal overnutrition increases the risk of long-term metabolic dysfunction in offspring. Exercise improves metabolism partly by upregulating mitochondrial biogenesis or function, via increased levels of nicotinamide adenine dinucleotide (NAD + ). We have shown that the NAD + precursor, nicotinamid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-11, Vol.7 (1), p.15063-11, Article 15063
Hauptverfasser: Uddin, Golam Mezbah, Youngson, Neil A., Doyle, Bronte M., Sinclair, David A., Morris, Margaret J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Maternal overnutrition increases the risk of long-term metabolic dysfunction in offspring. Exercise improves metabolism partly by upregulating mitochondrial biogenesis or function, via increased levels of nicotinamide adenine dinucleotide (NAD + ). We have shown that the NAD + precursor, nicotinamide mononucleotide (NMN) can reverse some of the negative consequences of high fat diet (HFD) consumption. To investigate whether NMN can impact developmentally-set metabolic deficits, we compared treadmill exercise and NMN injection in offspring of obese mothers. Five week old lean and obese female C57BL6/J mice were mated with chow fed males. Female offspring weaned onto HFD were given treadmill exercise for 9 weeks, or NMN injection daily for 18 days. Maternal obesity programmed increased adiposity and liver triglycerides, with decreased glucose tolerance, liver NAD + levels and citrate synthase activity in offspring. Both interventions reduced adiposity, and showed a modest improvement in glucose tolerance and improved markers of mitochondrial function. NMN appeared to have stronger effects on liver fat catabolism ( Hadh ) and synthesis ( Fasn ) than exercise. The interventions appeared to exert the most global benefit in mice that were most metabolically challenged (HFD-consuming offspring of obese mothers). This work encourages further study to confirm the suitability of NMN for use in reversing metabolic dysfunction linked to programming by maternal obesity.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-14866-z