Effects of LncRNA BC168687 siRNA on Diabetic Neuropathic Pain Mediated by P2X7 Receptor on SGCs in DRG of Rats

Diabetic neuropathic pain (DNP), one of the early symptoms of diabetic neuropathy, relates to metabolic disorders induced by high blood glucose, neurotrophic vascular ischemia and hypoxia, and autoimmune factors. This study was aimed at exploring the effects of long noncoding RNA (lncRNA) BC168687 s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2017, Vol.2017 (2017), p.1-10
Hauptverfasser: Xu, Changshui, Deng, Zeyu, Chen, Qiang, Yang, Yixin, Wu, Hui, Tao, Jia, Liu, Chenglong, Liu, Jiandi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diabetic neuropathic pain (DNP), one of the early symptoms of diabetic neuropathy, relates to metabolic disorders induced by high blood glucose, neurotrophic vascular ischemia and hypoxia, and autoimmune factors. This study was aimed at exploring the effects of long noncoding RNA (lncRNA) BC168687 siRNA on DNP mediated by P2X7 receptor on SGCs in DRG of rats. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) of rats, the expression levels of P2X7 mRNA and protein in the DRG, and nitric oxide (NO) in the serum were, respectively, detected in our study. Our experimental results showed that the level of BC168687 mRNA in DNP group was markedly higher than that of control group; the MWT and TWL of DNP + BC168687 si group were significantly increased, and the expression levels of P2X7 in DRG and the concentrations of NO in serum of DNP + BC168687 si group were decreased compared to those of the DNP group. In conclusion, lncRNA BC168687 may participate in the pathogenesis of DNP mediated by P2X7 receptor, which will provide a novel way for the study of the pathogenesis of diabetes mellitus complicated with neuropathic pain and its prevention and treatment.
ISSN:2314-6133
2314-6141
DOI:10.1155/2017/7831251