Adaptive Compressive Sensing of Images Using Spatial Entropy

Compressive Sensing (CS) realizes a low-complex image encoding architecture, which is suitable for resource-constrained wireless sensor networks. However, due to the nonstationary statistics of images, images reconstructed by the CS-based codec have many blocking artifacts and blurs. To overcome the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational Intelligence and Neuroscience 2017-01, Vol.2017 (2017), p.1-9
Hauptverfasser: He, Wei, Guo, Xiaoli, Duan, Xiaomeng, Li, Ran, Lv, Yongfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Compressive Sensing (CS) realizes a low-complex image encoding architecture, which is suitable for resource-constrained wireless sensor networks. However, due to the nonstationary statistics of images, images reconstructed by the CS-based codec have many blocking artifacts and blurs. To overcome these negative effects, we propose an Adaptive Block Compressive Sensing (ABCS) system based on spatial entropy. Spatial entropy measures the amount of information, which is used to allocate measuring resources to various regions. The scheme takes spatial entropy into consideration because rich information means more edges and textures. To reduce the computational complexity of decoding, a linear mode is used to reconstruct each block by the matrix-vector product. Experimental results show that our ABCS coding system provides a better reconstruction quality from both subjective and objective points of view, and it also has a low decoding complexity.
ISSN:1687-5265
1687-5273
DOI:10.1155/2017/9059204