A Meta-Analysis Suggests Different Neural Correlates for Implicit and Explicit Learning
A meta-analysis of non-human primates performing three different tasks (Object-Match, Category-Match, and Category-Saccade associations) revealed signatures of explicit and implicit learning. Performance improved equally following correct and error trials in the Match (explicit) tasks, but it improv...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2017-10, Vol.96 (2), p.521-534.e7 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A meta-analysis of non-human primates performing three different tasks (Object-Match, Category-Match, and Category-Saccade associations) revealed signatures of explicit and implicit learning. Performance improved equally following correct and error trials in the Match (explicit) tasks, but it improved more after correct trials in the Saccade (implicit) task, a signature of explicit versus implicit learning. Likewise, error-related negativity, a marker for error processing, was greater in the Match (explicit) tasks. All tasks showed an increase in alpha/beta (10–30 Hz) synchrony after correct choices. However, only the implicit task showed an increase in theta (3–7 Hz) synchrony after correct choices that decreased with learning. In contrast, in the explicit tasks, alpha/beta synchrony increased with learning and decreased thereafter. Our results suggest that explicit versus implicit learning engages different neural mechanisms that rely on different patterns of oscillatory synchrony.
•Explicit versus implicit learning have different post-choice oscillatory synchrony•Explicit learning exploits feedback about errors; implicit learning does not•Alpha/beta synchrony increases with explicit learning•Theta synchrony decreases with implicit learning
Loonis et al. find that explicit and implicit learning use feedback about correct choices versus errors differently. Implicit learning relies more on theta synchrony (3–7 Hz) while explicit learning relies on alpha/beta synchrony (10–30 Hz). |
---|---|
ISSN: | 0896-6273 1097-4199 |
DOI: | 10.1016/j.neuron.2017.09.032 |