Structural basis for the bacterial membrane insertion of dermcidin peptide, DCD-1L
Human dermcidin (DCD) is an antimicrobial peptide secreted constitutively by sweat glands. The anionic derivative, DCD-1L, comprises of the N-terminal 47 residues of DCD and one additional leucine residue. A previous NMR structure of DCD-1L in 50% TFE showed a partial helical conformation, and its c...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2017-10, Vol.7 (1), p.13923-11, Article 13923 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Human dermcidin (DCD) is an antimicrobial peptide secreted constitutively by sweat glands. The anionic derivative, DCD-1L, comprises of the N-terminal 47 residues of DCD and one additional leucine residue. A previous NMR structure of DCD-1L in 50% TFE showed a partial helical conformation, and its crystal structure in the presence of Zn
2+
outlined a hexameric linear α-helical bundle. Three different models to describe membrane insertion were proposed but no conclusion was drawn. In the current study, the NMR structure of DCD-1L in SDS micelles showed an “L-shaped” molecule with three fully formed α-helices connected by flexible turns. Formation of these helices in DCD-1L in the presence of POPG vesicles suggests that the acidic C-terminal region of DCD-1L can suppress the binding of DCD-1L to POPG vesicles at basic but not acidic pH. Mutation of charged residues on the N-terminal and C-terminal regions of DCD-1L cause differences in POPG binding, suggesting distinct functional roles for these two regions. Charged residues from these two regions are also found to differentially affect Zn
2+
coordination and aggregation of DCD-1L in the absence or presence of SDS, as monitored by 1D NMR. Our data agrees with one of the three models proposed. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-017-13600-z |