Immunological mechanism of low-dose priming radiation resistance in walker-256 tumor model mice

The aim of the present study was to investigate whether low-dose priming radiation induces antitumor immunity that can be augmented by the modulation of natural killer (NK) cell and cytokine activity using a mouse tumor model. Walker-256 cells were injected into the right flank of male BALB/c mice....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental and therapeutic medicine 2017-10, Vol.14 (4), p.3868-3873
Hauptverfasser: Feng, Li, Qin, Ling, Guo, Dan, Deng, Daping, Lu, Feng, Li, Hailiang, Bao, Narisu, Yang, Xiting, Ding, Hongyu, Li, Jianguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of the present study was to investigate whether low-dose priming radiation induces antitumor immunity that can be augmented by the modulation of natural killer (NK) cell and cytokine activity using a mouse tumor model. Walker-256 cells were injected into the right flank of male BALB/c mice. At 7 days after inoculation, mice were divided into three groups, including group 1,2,3. In group 1 the mice were without radiation, in group 2 the mice were received 2 Gy radiation only, and in group 3 the mice were radiated with a priming dose of 75 mGy followed by 2 Gy radiation after 24 h. On day 21 following the radiation, the tumors were removed and the tumor index (tumor weight as a percentage of body weight) was calculated. At 1, 7, 14 and 21 days following the 2 Gy radiation, mouse splenocytes were isolated to analyze the NK activity and measure the production of the cytokines interleukin-1β, interferon-γ and tumor necrosis factor-α by ELISA. Apoptosis was also measured by flow cytometry. The results demonstrated that priming radiation significantly delayed the tumor growth and prolonged the median survival time to 38 days compared with the 31-day survival in the 2 Gy radiation group. The percentage of apoptotic cells was significantly higher in the mice that received 75 mGy + 2 Gy radiation compared with that in the mice that received 2 Gy alone; by contrast, mice that were not irradiated exhibited a relatively low level of apoptosis. The primed mice had a higher level of NK activity as compared with the mice exposed to 2 Gy radiation only or mice that were not irradiated. Furthermore, cytokine expression remained at a higher level in mice receiving priming dose of radiation compared that in the mice receiving only 2 Gy radiation. In conclusion, the results indicated that low-dose priming X-ray radiation may enhance the NK activity and the levels of cytokines, and that the immune response serves an important role in anticancer therapy, including radiotherapy.
ISSN:1792-0981
1792-1015
DOI:10.3892/etm.2017.4975