Self-assembly of a parallelogram black phosphorus ribbon into a nanotube
A nanotube from single-layer black phosphorus (BP) has never been discovered in experiments. The present study proposed a method for the fabrication of a BP nanotube (BPNT) from a parallelogram nanoribbon self-assembled on a carbon nanotube (CNT). The nanoribbon has a pair of opposite sides along th...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2017-10, Vol.7 (1), p.12951-10, Article 12951 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A nanotube from single-layer black phosphorus (BP) has never been discovered in experiments. The present study proposed a method for the fabrication of a BP nanotube (BPNT) from a parallelogram nanoribbon self-assembled on a carbon nanotube (CNT). The nanoribbon has a pair of opposite sides along the third principal direction. According to the numerical simulation via molecular dynamics approach, we discover that a wider BP nanoribbon can form into a series of chiral nanotube by self-assembly upon CNTs with different radii. The radius of a BPNT from the same ribbon has a wide range, and depends on both geometry of the ribbon and the CNT. One can obtain a BPNT with the specified radius by placing the ribbon nearby a given CNT. The method provides a clue for potential fabrication of BPNTs. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-017-13328-w |