Fast Constrained Spectral Clustering and Cluster Ensemble with Random Projection
Constrained spectral clustering (CSC) method can greatly improve the clustering accuracy with the incorporation of constraint information into spectral clustering and thus has been paid academic attention widely. In this paper, we propose a fast CSC algorithm via encoding landmark-based graph constr...
Gespeichert in:
Veröffentlicht in: | Computational Intelligence and Neuroscience 2017-01, Vol.2017 (2017), p.1-14 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 2017 |
container_start_page | 1 |
container_title | Computational Intelligence and Neuroscience |
container_volume | 2017 |
creator | Hu, Xuexian Wei, Jianghong Ye, Mao Liu, Wenfen |
description | Constrained spectral clustering (CSC) method can greatly improve the clustering accuracy with the incorporation of constraint information into spectral clustering and thus has been paid academic attention widely. In this paper, we propose a fast CSC algorithm via encoding landmark-based graph construction into a new CSC model and applying random sampling to decrease the data size after spectral embedding. Compared with the original model, the new algorithm has the similar results with the increase of its model size asymptotically; compared with the most efficient CSC algorithm known, the new algorithm runs faster and has a wider range of suitable data sets. Meanwhile, a scalable semisupervised cluster ensemble algorithm is also proposed via the combination of our fast CSC algorithm and dimensionality reduction with random projection in the process of spectral ensemble clustering. We demonstrate by presenting theoretical analysis and empirical results that the new cluster ensemble algorithm has advantages in terms of efficiency and effectiveness. Furthermore, the approximate preservation of random projection in clustering accuracy proved in the stage of consensus clustering is also suitable for the weighted k-means clustering and thus gives the theoretical guarantee to this special kind of k-means clustering where each point has its corresponding weight. |
doi_str_mv | 10.1155/2017/2658707 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5632995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A546404521</galeid><airiti_id>P20160527002_201712_201810240007_201810240007_1_14_022</airiti_id><sourcerecordid>A546404521</sourcerecordid><originalsourceid>FETCH-LOGICAL-a569t-42407310d41dabdf1fbee69fc30952050df34cc402f844b8191a51cc71fb50053</originalsourceid><addsrcrecordid>eNqNks1vEzEQxVcIREvhxhmtxAUJQmf8sV5fkKqoBaQiIj7OltfrTRzt2qm9oeK_x9ukCeXEaTyan5_9_FwULxHeI3J-TgDFOal4LUA8Kk6xqsWME0EfH9YVPymepbQG4IIDeVqcEEmRMCZOi8WVTmM5Dz6NUTtv2_L7xpq87st5v02jjc4vS-3b-7a89MkOTW_LWzeuym95FIZyEcM6b3PBPy-edLpP9sW-nhU_ry5_zD_Nrr9-_Dy_uJ5pXslxxggDQRFahq1u2g67xtpKdoaC5AQ4tB1lxjAgXc1YU6NEzdEYkUGejdCz4sNOd7NtBtsa66dLq010g46_VdBOPZx4t1LL8EvxihIpJ4E3e4EYbrY2jWpwydi-196GbVIoa8m5lMgy-vofdB220Wd7mWI1rUR-1yO11L1Vznchn2smUXXBWcWAcYKZerejTAwpRdsdroygpkDVFKjaB5rxV3_bPMD3CWbg7Q5YOd_qW_efcjYzttNHGqms-WT1yw7QLrrRHY0usk4F-WMBkDtNvCs1Qk4SQDxsUCFTQAj9A5yyxWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1948367750</pqid></control><display><type>article</type><title>Fast Constrained Spectral Clustering and Cluster Ensemble with Random Projection</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Hu, Xuexian ; Wei, Jianghong ; Ye, Mao ; Liu, Wenfen</creator><contributor>Andina, Diego</contributor><creatorcontrib>Hu, Xuexian ; Wei, Jianghong ; Ye, Mao ; Liu, Wenfen ; Andina, Diego</creatorcontrib><description>Constrained spectral clustering (CSC) method can greatly improve the clustering accuracy with the incorporation of constraint information into spectral clustering and thus has been paid academic attention widely. In this paper, we propose a fast CSC algorithm via encoding landmark-based graph construction into a new CSC model and applying random sampling to decrease the data size after spectral embedding. Compared with the original model, the new algorithm has the similar results with the increase of its model size asymptotically; compared with the most efficient CSC algorithm known, the new algorithm runs faster and has a wider range of suitable data sets. Meanwhile, a scalable semisupervised cluster ensemble algorithm is also proposed via the combination of our fast CSC algorithm and dimensionality reduction with random projection in the process of spectral ensemble clustering. We demonstrate by presenting theoretical analysis and empirical results that the new cluster ensemble algorithm has advantages in terms of efficiency and effectiveness. Furthermore, the approximate preservation of random projection in clustering accuracy proved in the stage of consensus clustering is also suitable for the weighted k-means clustering and thus gives the theoretical guarantee to this special kind of k-means clustering where each point has its corresponding weight.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2017/2658707</identifier><identifier>PMID: 29312447</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Accuracy ; Algorithms ; Big Data ; Clustering ; Clustering (Computers) ; Clusters ; Computer science ; Data analysis ; Data mining ; Datasets ; Electronic data processing ; Embedding ; Empirical analysis ; Forecasting ; Information processing ; Information theory ; International conferences ; Laboratories ; Mathematical problems ; Methods ; Preservation ; Random sampling ; Spectra</subject><ispartof>Computational Intelligence and Neuroscience, 2017-01, Vol.2017 (2017), p.1-14</ispartof><rights>Copyright © 2017 Wenfen Liu et al.</rights><rights>COPYRIGHT 2017 John Wiley & Sons, Inc.</rights><rights>Copyright © 2017 Wenfen Liu et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2017 Wenfen Liu et al. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a569t-42407310d41dabdf1fbee69fc30952050df34cc402f844b8191a51cc71fb50053</citedby><cites>FETCH-LOGICAL-a569t-42407310d41dabdf1fbee69fc30952050df34cc402f844b8191a51cc71fb50053</cites><orcidid>0000-0002-0286-7973 ; 0000-0003-0372-7427 ; 0000-0001-9778-9463</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632995/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632995/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29312447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Andina, Diego</contributor><creatorcontrib>Hu, Xuexian</creatorcontrib><creatorcontrib>Wei, Jianghong</creatorcontrib><creatorcontrib>Ye, Mao</creatorcontrib><creatorcontrib>Liu, Wenfen</creatorcontrib><title>Fast Constrained Spectral Clustering and Cluster Ensemble with Random Projection</title><title>Computational Intelligence and Neuroscience</title><addtitle>Comput Intell Neurosci</addtitle><description>Constrained spectral clustering (CSC) method can greatly improve the clustering accuracy with the incorporation of constraint information into spectral clustering and thus has been paid academic attention widely. In this paper, we propose a fast CSC algorithm via encoding landmark-based graph construction into a new CSC model and applying random sampling to decrease the data size after spectral embedding. Compared with the original model, the new algorithm has the similar results with the increase of its model size asymptotically; compared with the most efficient CSC algorithm known, the new algorithm runs faster and has a wider range of suitable data sets. Meanwhile, a scalable semisupervised cluster ensemble algorithm is also proposed via the combination of our fast CSC algorithm and dimensionality reduction with random projection in the process of spectral ensemble clustering. We demonstrate by presenting theoretical analysis and empirical results that the new cluster ensemble algorithm has advantages in terms of efficiency and effectiveness. Furthermore, the approximate preservation of random projection in clustering accuracy proved in the stage of consensus clustering is also suitable for the weighted k-means clustering and thus gives the theoretical guarantee to this special kind of k-means clustering where each point has its corresponding weight.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Big Data</subject><subject>Clustering</subject><subject>Clustering (Computers)</subject><subject>Clusters</subject><subject>Computer science</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Electronic data processing</subject><subject>Embedding</subject><subject>Empirical analysis</subject><subject>Forecasting</subject><subject>Information processing</subject><subject>Information theory</subject><subject>International conferences</subject><subject>Laboratories</subject><subject>Mathematical problems</subject><subject>Methods</subject><subject>Preservation</subject><subject>Random sampling</subject><subject>Spectra</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqNks1vEzEQxVcIREvhxhmtxAUJQmf8sV5fkKqoBaQiIj7OltfrTRzt2qm9oeK_x9ukCeXEaTyan5_9_FwULxHeI3J-TgDFOal4LUA8Kk6xqsWME0EfH9YVPymepbQG4IIDeVqcEEmRMCZOi8WVTmM5Dz6NUTtv2_L7xpq87st5v02jjc4vS-3b-7a89MkOTW_LWzeuym95FIZyEcM6b3PBPy-edLpP9sW-nhU_ry5_zD_Nrr9-_Dy_uJ5pXslxxggDQRFahq1u2g67xtpKdoaC5AQ4tB1lxjAgXc1YU6NEzdEYkUGejdCz4sNOd7NtBtsa66dLq010g46_VdBOPZx4t1LL8EvxihIpJ4E3e4EYbrY2jWpwydi-196GbVIoa8m5lMgy-vofdB220Wd7mWI1rUR-1yO11L1Vznchn2smUXXBWcWAcYKZerejTAwpRdsdroygpkDVFKjaB5rxV3_bPMD3CWbg7Q5YOd_qW_efcjYzttNHGqms-WT1yw7QLrrRHY0usk4F-WMBkDtNvCs1Qk4SQDxsUCFTQAj9A5yyxWw</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Hu, Xuexian</creator><creator>Wei, Jianghong</creator><creator>Ye, Mao</creator><creator>Liu, Wenfen</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0286-7973</orcidid><orcidid>https://orcid.org/0000-0003-0372-7427</orcidid><orcidid>https://orcid.org/0000-0001-9778-9463</orcidid></search><sort><creationdate>20170101</creationdate><title>Fast Constrained Spectral Clustering and Cluster Ensemble with Random Projection</title><author>Hu, Xuexian ; Wei, Jianghong ; Ye, Mao ; Liu, Wenfen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a569t-42407310d41dabdf1fbee69fc30952050df34cc402f844b8191a51cc71fb50053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Big Data</topic><topic>Clustering</topic><topic>Clustering (Computers)</topic><topic>Clusters</topic><topic>Computer science</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Electronic data processing</topic><topic>Embedding</topic><topic>Empirical analysis</topic><topic>Forecasting</topic><topic>Information processing</topic><topic>Information theory</topic><topic>International conferences</topic><topic>Laboratories</topic><topic>Mathematical problems</topic><topic>Methods</topic><topic>Preservation</topic><topic>Random sampling</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xuexian</creatorcontrib><creatorcontrib>Wei, Jianghong</creatorcontrib><creatorcontrib>Ye, Mao</creatorcontrib><creatorcontrib>Liu, Wenfen</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational Intelligence and Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Xuexian</au><au>Wei, Jianghong</au><au>Ye, Mao</au><au>Liu, Wenfen</au><au>Andina, Diego</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Constrained Spectral Clustering and Cluster Ensemble with Random Projection</atitle><jtitle>Computational Intelligence and Neuroscience</jtitle><addtitle>Comput Intell Neurosci</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>Constrained spectral clustering (CSC) method can greatly improve the clustering accuracy with the incorporation of constraint information into spectral clustering and thus has been paid academic attention widely. In this paper, we propose a fast CSC algorithm via encoding landmark-based graph construction into a new CSC model and applying random sampling to decrease the data size after spectral embedding. Compared with the original model, the new algorithm has the similar results with the increase of its model size asymptotically; compared with the most efficient CSC algorithm known, the new algorithm runs faster and has a wider range of suitable data sets. Meanwhile, a scalable semisupervised cluster ensemble algorithm is also proposed via the combination of our fast CSC algorithm and dimensionality reduction with random projection in the process of spectral ensemble clustering. We demonstrate by presenting theoretical analysis and empirical results that the new cluster ensemble algorithm has advantages in terms of efficiency and effectiveness. Furthermore, the approximate preservation of random projection in clustering accuracy proved in the stage of consensus clustering is also suitable for the weighted k-means clustering and thus gives the theoretical guarantee to this special kind of k-means clustering where each point has its corresponding weight.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><pmid>29312447</pmid><doi>10.1155/2017/2658707</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0286-7973</orcidid><orcidid>https://orcid.org/0000-0003-0372-7427</orcidid><orcidid>https://orcid.org/0000-0001-9778-9463</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-5265 |
ispartof | Computational Intelligence and Neuroscience, 2017-01, Vol.2017 (2017), p.1-14 |
issn | 1687-5265 1687-5273 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5632995 |
source | Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Accuracy Algorithms Big Data Clustering Clustering (Computers) Clusters Computer science Data analysis Data mining Datasets Electronic data processing Embedding Empirical analysis Forecasting Information processing Information theory International conferences Laboratories Mathematical problems Methods Preservation Random sampling Spectra |
title | Fast Constrained Spectral Clustering and Cluster Ensemble with Random Projection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Constrained%20Spectral%20Clustering%20and%20Cluster%20Ensemble%20with%20Random%20Projection&rft.jtitle=Computational%20Intelligence%20and%20Neuroscience&rft.au=Hu,%20Xuexian&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2017/2658707&rft_dat=%3Cgale_pubme%3EA546404521%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1948367750&rft_id=info:pmid/29312447&rft_galeid=A546404521&rft_airiti_id=P20160527002_201712_201810240007_201810240007_1_14_022&rfr_iscdi=true |