Fast Constrained Spectral Clustering and Cluster Ensemble with Random Projection

Constrained spectral clustering (CSC) method can greatly improve the clustering accuracy with the incorporation of constraint information into spectral clustering and thus has been paid academic attention widely. In this paper, we propose a fast CSC algorithm via encoding landmark-based graph constr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational Intelligence and Neuroscience 2017-01, Vol.2017 (2017), p.1-14
Hauptverfasser: Hu, Xuexian, Wei, Jianghong, Ye, Mao, Liu, Wenfen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Constrained spectral clustering (CSC) method can greatly improve the clustering accuracy with the incorporation of constraint information into spectral clustering and thus has been paid academic attention widely. In this paper, we propose a fast CSC algorithm via encoding landmark-based graph construction into a new CSC model and applying random sampling to decrease the data size after spectral embedding. Compared with the original model, the new algorithm has the similar results with the increase of its model size asymptotically; compared with the most efficient CSC algorithm known, the new algorithm runs faster and has a wider range of suitable data sets. Meanwhile, a scalable semisupervised cluster ensemble algorithm is also proposed via the combination of our fast CSC algorithm and dimensionality reduction with random projection in the process of spectral ensemble clustering. We demonstrate by presenting theoretical analysis and empirical results that the new cluster ensemble algorithm has advantages in terms of efficiency and effectiveness. Furthermore, the approximate preservation of random projection in clustering accuracy proved in the stage of consensus clustering is also suitable for the weighted k-means clustering and thus gives the theoretical guarantee to this special kind of k-means clustering where each point has its corresponding weight.
ISSN:1687-5265
1687-5273
DOI:10.1155/2017/2658707