Adherence potential of indigenous lactic acid bacterial isolates obtained from fermented foods of Western Himalayas to intestinal epithelial Caco-2 and HT-29 cell lines
The adherence of bacteria to epithelial cells and mucosal surfaces is a prerequisite for their colonization in the gut and a key criterion for the selection of probiotics. In this study, the eleven indigenous lactic acid bacterial isolates obtained from traditional fermented foods of Western Himalay...
Gespeichert in:
Veröffentlicht in: | Journal of food science and technology 2017-10, Vol.54 (11), p.3504-3511 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The adherence of bacteria to epithelial cells and mucosal surfaces is a prerequisite for their colonization in the gut and a key criterion for the selection of probiotics. In this study, the eleven indigenous lactic acid bacterial isolates obtained from traditional fermented foods of Western Himalayas were screened for their adherence potential to intestinal epithelial cell lines. The level of adherence of eleven indigenous isolates to Caco-2 and HT-29 cell lines varied from 2.45 ± 0.5 to 9.55 ± 0.76% and 4.11 ± 0.68 to 12.88 ± 0.63%, respectively. Percent adhesion of indigenous isolates to Caco-2 cells was relatively lower as compared to HT-29 cells. Indigenous isolate AdF10 (
L. plantarum
) was found to be the most adhesive to HT-29 and Caco-2 with corresponding figures of 12.88 ± 0.63 and 9.55 ± 0.76%, respectively. AdF4 (
B. coagulans
) was found to be least adhesive to HT-29 and Caco-2 with respective corresponding figures of 4.11 ± 0.68 and 2.45 ± 0.5%. Based on the percent adhesion values, indigenous isolate AdF10 (
L. plantarum
) was comparable to the reference probiotic strain
L. rhamnosus
GG-ATCC-53103 with respective adhesion of 13.5 ± 1.19 and 10.33 ± 0.64% to HT-29 and Caco-2 cell lines. It was closely followed by indigenous isolates AdF5 (
L. plantarum
) and AdF6 (
L. plantarum
); thus, indicating their potential as a promising probiotic candidates. |
---|---|
ISSN: | 0022-1155 0975-8402 |
DOI: | 10.1007/s13197-017-2807-1 |