On the topology of the Lorenz system

We present a new paradigm for three-dimensional chaos, and specifically for the Lorenz equations. The main difficulty in these equations and for a generic flow in dimension 3 is the existence of singularities. We show how to use knot theory as a way to remove the singularities. Specifically, we clai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2017-09, Vol.473 (2205), p.20170374-20170374
1. Verfasser: Pinsky, Tali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new paradigm for three-dimensional chaos, and specifically for the Lorenz equations. The main difficulty in these equations and for a generic flow in dimension 3 is the existence of singularities. We show how to use knot theory as a way to remove the singularities. Specifically, we claim: (i) for certain parameters, the Lorenz system has an invariant one-dimensional curve, which is a trefoil knot. The knot is a union of invariant manifolds of the singular points. (ii) The flow is topologically equivalent to an Anosov flow on the complement of this curve, and moreover to a geodesic flow. (iii) When varying the parameters, the system exhibits topological phase transitions, i.e. for special parameter values, it will be topologically equivalent to an Anosov flow on a knot complement. Different knots appear for different parameter values and each knot controls the dynamics at nearby parameters.
ISSN:1364-5021
1471-2946
DOI:10.1098/rspa.2017.0374