Cardiovascular Protective Effects of Salvianic Acid A on db/db Mice with Elevated Homocysteine Level

The onsets of left ventricular hypertrophy (LVH) and endothelial dysfunction (ED) in diabetics, especially in those with elevated homocysteine (Hcy), precede the development of cardiovascular (CV) events. Salvianic acid A (SAA) is a renowned Traditional Chinese Medicine (TCM) that has been applied i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oxidative medicine and cellular longevity 2017-01, Vol.2017 (2017), p.1-10
Hauptverfasser: Lai, Christopher W. K., Chan, Shun-Wan, Siu, Parco M., Gao, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The onsets of left ventricular hypertrophy (LVH) and endothelial dysfunction (ED) in diabetics, especially in those with elevated homocysteine (Hcy), precede the development of cardiovascular (CV) events. Salvianic acid A (SAA) is a renowned Traditional Chinese Medicine (TCM) that has been applied in the treatment of cardiovascular disease for many decades. In this study, we aimed (1) to investigate the CV protective effects of SAA on ameliorating LVH and ED in db/db mice with elevated blood Hcy level and (2) to decipher whether the observed CV protective effects of SAA are associated with Hcy metabolism by modulating the methylation potential and redox status in the liver of the db/db mice with elevated blood Hcy level. Our results found that the administration of SAA could significantly slow down the build-up of left ventricular mass and ameliorate ED. Immunological assay analysis on the mouse liver tissue also indicated that SAA treatment on db/db mice with elevated Hcy was associated with reduced methylation potential but improved redox status. In conclusion, we revealed that SAA has the potential to protect against the hyperglycemia- and hyperhomocysteinemia-induced oxidative stress on diabetic mice via modulation in Hcy metabolism.
ISSN:1942-0900
1942-0994
DOI:10.1155/2017/9506925