ADH1B: From alcoholism, natural selection, and cancer to the human phenome
The ADH1B (Alcohol Dehydrogenase 1B (class I), Beta Polypeptide) gene and its best‐known functional alleles, Arg48His (rs1229984, ADH1B*2) and Arg370Cys (rs2066702, ADH1B*3), have been investigated in relation to many phenotypic traits; most frequently including alcohol metabolism and alcohol drinki...
Gespeichert in:
Veröffentlicht in: | American journal of medical genetics. Part B, Neuropsychiatric genetics Neuropsychiatric genetics, 2018-03, Vol.177 (2), p.113-125 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ADH1B (Alcohol Dehydrogenase 1B (class I), Beta Polypeptide) gene and its best‐known functional alleles, Arg48His (rs1229984, ADH1B*2) and Arg370Cys (rs2066702, ADH1B*3), have been investigated in relation to many phenotypic traits; most frequently including alcohol metabolism and alcohol drinking behaviors, but also human evolution, liver function, cancer, and, recently, the comprehensive human phenome. To understand ADH1B functions and consequences, we provide here a bioinformatic analysis of its gene regulation and molecular functions, literature review of studies focused on this gene, and a discussion regarding future research perspectives. Certain ADH1B alleles have large effects on alcohol metabolism, and this relationship particularly encourages further investigations in relation to alcoholism and alcohol‐associated cancer to understand better the mechanisms by which alcohol metabolism contributes to alcohol abuse and carcinogenesis. We also observed that ADH1B has complex mechanisms that regulate its expression across multiple human tissues, and these may be involved in cardiac and metabolic traits. Evolutionary data strongly suggest that the selection signatures at the ADH1B locus are primarily related to effects other than those on alcohol metabolism. This is also supported by the involvement of ADH1B in multiple molecular pathways and by the findings of our recent phenome‐wide association study. Accordingly, future studies should also investigate other functions of ADH1B potentially relevant for the human phenome. © 2017 Wiley Periodicals, Inc. |
---|---|
ISSN: | 1552-4841 1552-485X |
DOI: | 10.1002/ajmg.b.32523 |