The use of gamma-survey measurements to better understand radon potential in urban areas

[Display omitted] Accounting for as much as 14% of all lung cancers worldwide, cumulative radon progeny exposure is the leading cause of lung cancer among never-smokers both internationally and in the United States. To understand the risk of radon progeny exposure, studies have mapped radon potentia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2017-12, Vol.607-608, p.888-899
Hauptverfasser: Berens, Andrew S., Diem, Jeremy, Stauber, Christine, Dai, Dajun, Foster, Stephanie, Rothenberg, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Accounting for as much as 14% of all lung cancers worldwide, cumulative radon progeny exposure is the leading cause of lung cancer among never-smokers both internationally and in the United States. To understand the risk of radon progeny exposure, studies have mapped radon potential using aircraft-based measurements of gamma emissions. However, these efforts are hampered in urban areas where the built environment obstructs aerial data collection. To address part of this limitation, this study aimed to evaluate the effectiveness of using in situ gamma readings (taken with a scintillation probe attached to a ratemeter) to assess radon potential in an urban environment: DeKalb County, part of the Atlanta metropolitan area, Georgia, USA. After taking gamma measurements at 402 survey sites, empirical Bayesian kriging was used to create a continuous surface of predicted gamma readings for the county. We paired these predicted gamma readings with indoor radon concentration data from 1351 residential locations. Statistical tests showed the interpolated gamma values were significantly but weakly positively related with indoor radon concentrations, though this relationship is decreasingly informative at finer geographic scales. Geology, gamma readings, and indoor radon were interrelated, with granitic gneiss generally having the highest gamma readings and highest radon concentrations and ultramafic rock having the lowest of each. Our findings indicate the highest geogenic radon potential may exists in the relatively undeveloped southeastern part of the county. It is possible that in situ gamma, in concert with other variables, could offer an alternative to aerial radioactivity measurements when determining radon potential, though future work will be needed to address this project's limitations. •Efficacy of in situ gamma surveys in place of unavailable areal data to determine radon exposure potential is analyzed.•In situ gamma readings show weak but positive relationships with indoor radon on a house by house basis.•At courser spatial resolutions the positive association between gamma surveys and average indoor radon is stronger.•In situ gamma surveys may function as a predictor of generalized radon potential when combined with other variables.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2017.07.022