Ultra-Broadband Nonlinearity Enhancement based on a Novel Graphene-Silicon Hybrid Waveguide: Structure Design and Theoretical Analysis

A graphene-silicon hybrid waveguide with a dielectric spacer is proposed to enhance the nonlinear response in ultra-wide wavelength range by applying graphene’s broadband highly nonlinear optical properties. The chemical potential of the graphene layer is tuned to satisfy the resonance condition and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-09, Vol.7 (1), p.12290-11, Article 12290
Hauptverfasser: Jin, Qiang, Li, Xibin, Chen, Junfan, Gao, Shiming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A graphene-silicon hybrid waveguide with a dielectric spacer is proposed to enhance the nonlinear response in ultra-wide wavelength range by applying graphene’s broadband highly nonlinear optical properties. The chemical potential of the graphene layer is tuned to satisfy the resonance condition and hence a low propagation loss is obtained. The dielectric spacer is used for avoiding additional free-carrier-absorption loss due to carrier interchange between the silicon core and the graphene layer. Aiming at the special waveguide structure with ultra-thin graphene layer, a full-vectorial theoretical model is developed to analyze its nonlinear properties. The waveguide dimensions are optimized in terms of the nonlinear parameter. The proposed hybrid waveguide exhibits high nonlinearity enhancement in an ultra-broad wavelength region covering near-infrared and mid-infrared bands. The conversion efficiency for a degenerate four-wave mixing process reaches −18.5 dB only with a pump power of 0.5 W and a waveguide length of tens of microns. In the wavelength range of 1.3–2.3 μm, the conversion efficiency can be kept stable by adopting suitable waveguide geometry and length. The corresponding 3-dB bandwidth can reach 40–110 nm for each fixed pump. The graphene-silicon hybrid waveguide has the potential to support chip-scale nonlinear applications in both near- and mid-infrared bands.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-12554-6