RNA-seq based gene expression analysis of ovarian granulosa cells exposed to zearalenone in vitro : significance to steroidogenesis

Zearalenone (ZEA) is a natural contaminant of various food and feed products representing a significant problem worldwide. Since the occurrence of ZEA in grains and feeds is frequent, the present study was carried out to evaluate the possible effects of ZEA on steroid production and gene expression...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncotarget 2017-09, Vol.8 (38), p.64001-64014
Hauptverfasser: Zhang, Guo-Liang, Zhang, Rui-Qian, Sun, Xiao-Feng, Cheng, Shun-Feng, Wang, Yu-Feng, Ji, Chuan-Liang, Feng, Yan-Zhong, Yu, Jie, Ge, Wei, Zhao, Yong, Sun, Shi-Duo, Shen, Wei, Li, Lan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Zearalenone (ZEA) is a natural contaminant of various food and feed products representing a significant problem worldwide. Since the occurrence of ZEA in grains and feeds is frequent, the present study was carried out to evaluate the possible effects of ZEA on steroid production and gene expression of porcine granulosa cells, using RNA-seq analysis. Porcine granulosa cells were administered 10 μM and 30 μM ZEA during 72 h of culture . Following ZEA treatment the gene expression profile of control and exposed granulosa cells was compared using RNA-seq analysis. The results showed that in the exposed granulosa cells ZEA significantly altered the transcript levels, particularly steroidogenesis associated genes. Compared with the control group, 10 μM and 30 μM ZEA treatment significantly increased the mRNA expression of , , and genes and significantly reduced the mRNA expression of and genes. In particular, ZEA significantly decreased the expression of genes essential for estrogen synthesis including , and in granulosa cells. Furthermore, Q-PCR and Western-blot analysis also confirmed reduced expression of these genes in ZEA exposed granulosa cells. These effects were associated with a significant reduction of 17β-estradiol concentrations in the culture medium of granulosa cells. Collectively, these results demonstrated a concretely deleterious effect of ZEA exposure on the mRNA expression of steroidogenesis related genes and the production of steroid hormones in porcine ovarian granulosa cells .
ISSN:1949-2553
1949-2553
DOI:10.18632/oncotarget.19699