Crosslinking of DNA-linked ligands to target proteins for enrichment from DNA-encoded libraries
Achieving sufficient enrichment of ligands from DNA-encoded libraries for detection can be difficult, particularly for low affinity ligands within highly complex libraries. To address this challenge, we present an approach for crosslinking DNA-linked ligands to target proteins using electrophilic or...
Gespeichert in:
Veröffentlicht in: | MedChemComm 2016-10, Vol.7 (10), p.2020-2027 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Achieving sufficient enrichment of ligands from DNA-encoded libraries for detection can be difficult, particularly for low affinity ligands within highly complex libraries. To address this challenge, we present an approach for crosslinking DNA-linked ligands to target proteins using electrophilic or photoreactive groups. The approach involves the teathering of a ssDNA oligonucleotide to a DNA-encoded molecule to enable attachment of a reactive group post-synthetically via DNA hybridization. Crosslinking traps ligand-protein complexes while in solution and allows for stringent washing conditions to be applied in the subsequent purification. Five reactive groups (tosyl, NHS ester, sulfonyl fluoride, phenyl azide, and diazirine) were tested for crosslinking efficiency and specificity with three DNA-linked ligands to their target proteins. In a model selection, crosslinking resulted in improved enrichment of both high and a low affinity ligands in comparison to a selection with a solid-phase immobilized protein. |
---|---|
ISSN: | 2040-2503 2040-2511 |
DOI: | 10.1039/C6MD00288A |