Repeat-Induced Point Mutation and Other Genome Defense Mechanisms in Fungi
Transposable elements have colonized the genomes of nearly all organisms, including fungi. Although transposable elements may sometimes provide beneficial functions to their hosts their overall impact is considered deleterious. As a result, the activity of transposable elements needs to be counterba...
Gespeichert in:
Veröffentlicht in: | Microbiology spectrum 2017-07, Vol.5 (4) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Transposable elements have colonized the genomes of nearly all organisms, including fungi. Although transposable elements may sometimes provide beneficial functions to their hosts their overall impact is considered deleterious. As a result, the activity of transposable elements needs to be counterbalanced by the host genome defenses. In fungi, the primary genome defense mechanisms include repeat-induced point mutation (RIP) and methylation induced premeiotically, meiotic silencing by unpaired DNA, sex-induced silencing, cosuppression (also known as somatic quelling), and cotranscriptional RNA surveillance. Recent studies of the filamentous fungus
have shown that the process of repeat recognition for RIP apparently involves interactions between coaligned double-stranded segments of chromosomal DNA. These studies have also shown that RIP can be mediated by the conserved pathway that establishes transcriptional (heterochromatic) silencing of repetitive DNA. In light of these new findings, RIP emerges as a specialized case of the general phenomenon of heterochromatic silencing of repetitive DNA. |
---|---|
ISSN: | 2165-0497 2165-0497 |
DOI: | 10.1128/microbiolspec.FUNK-0042-2017 |