Overexpression of Candida albicans Secreted Aspartyl Proteinase 2 or 5 Is Not Sufficient for Exacerbation of Immunopathology in a Murine Model of Vaginitis
The secreted aspartyl proteinases of have long been implicated in virulence at the mucosal surface, including contributions to colonization and immunopathogenesis during vulvovaginal candidiasis. In an effort to disentangle hypha-associated virulence factor regulation from morphological transition,...
Gespeichert in:
Veröffentlicht in: | Infection and immunity 2017-10, Vol.85 (10) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The secreted aspartyl proteinases of
have long been implicated in virulence at the mucosal surface, including contributions to colonization and immunopathogenesis during vulvovaginal candidiasis. In an effort to disentangle hypha-associated virulence factor regulation from morphological transition, the purpose of this study was to determine if overexpression of
or
in an
Δ/Δ
Δ/Δ mutant could restore the capacity to cause immunopathology during murine vaginitis to this avirulent hypofilamentous strain. Two similar yet distinct genetic approaches were used to construct expression vectors to achieve SAP overexpression, and both genetic and functional assays confirmed elevated SAP activity in transformed strains. Similar to previous findings, intravaginal challenge of C57BL/6 mice with hypha-defective strains attained high levels of mucosal colonization but failed to induce robust vaginal immunopathology (neutrophil recruitment, interleukin-1β [IL-1β] secretion, and lactate dehydrogenase release) compared to that with the hypha-competent control. Moreover, constitutive expression of
or
in two distinct sets of such strains did not elicit immunopathological markers at levels above those observed during challenge with isogenic empty vector controls. Therefore, these results suggest that the physiological contributions of SAPs to vaginal immunopathology require hypha formation, other hypha-associated factors, or genetic interaction with
and/or
to cause symptomatic infection. Additionally, the outlined expression strategy and strain sets will be useful for decoupling other downstream morphogenetic factors from hyphal growth. |
---|---|
ISSN: | 0019-9567 1098-5522 |
DOI: | 10.1128/IAI.00248-17 |