Breast Cancer Suppression by Progesterone Receptors Is Mediated by Their Modulation of Estrogen Receptors and RNA Polymerase III

Greater than 50% of estrogen receptor (ER)-positive breast cancers coexpress the progesterone receptor (PR), which can directly and globally modify ER action to attenuate tumor growth. However, whether this attenuation is mediated only through PR-ER interaction remains unknown. To address this quest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2017-09, Vol.77 (18), p.4934-4946
Hauptverfasser: Finlay-Schultz, Jessica, Gillen, Austin E, Brechbuhl, Heather M, Ivie, Joshua J, Matthews, Shawna B, Jacobsen, Britta M, Bentley, David L, Kabos, Peter, Sartorius, Carol A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Greater than 50% of estrogen receptor (ER)-positive breast cancers coexpress the progesterone receptor (PR), which can directly and globally modify ER action to attenuate tumor growth. However, whether this attenuation is mediated only through PR-ER interaction remains unknown. To address this question, we assessed tumor growth in ER/PR-positive patient-derived xenograft models of breast cancer, where both natural and synthetic progestins were found to antagonize the mitogenic effects of estrogens. Probing the genome-wide mechanisms by which this occurs, we documented that chronic progestin treatment blunted ER-mediated gene expression up to 2-fold at the level of mRNA transcripts. Unexpectedly, 50% of PR binding sites were co-occupied by ER, with a propensity for both receptors to coordinately gain or lose binding in the presence of progesterone. In the second group, PR but not ER was associated with a large fraction of RNA polymerase III-transcribed tRNA genes, independent of hormone treatment. Notably, we discovered that PR physically associated with the Pol III holoenzyme. Select pre-tRNAs and mature tRNAs with PR and POLR3A colocalized at their promoters were relatively decreased in estrogen + progestin-treated tumors. Our results illuminate how PR may indirectly impede ER action by reducing the bioavailability of translational molecules needed for tumor growth. .
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.CAN-16-3541