Kindlin-2 Regulates the Growth of Breast Cancer Tumors by Activating CSF-1-Mediated Macrophage Infiltration

Interplay between tumor cells and host cells in the tumor microenvironment dictates the development of all cancers. In breast cancer, malignant cells educate host macrophages to adopt a protumorigenic phenotype. In this study, we show how the integrin-regulatory protein kindlin-2 (FERMT2) promotes m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2017-09, Vol.77 (18), p.5129-5141
Hauptverfasser: Sossey-Alaoui, Khalid, Pluskota, Elzbieta, Bialkowska, Katarzyna, Szpak, Dorota, Parker, Yvonne, Morrison, Chevaun D, Lindner, Daniel J, Schiemann, William P, Plow, Edward F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interplay between tumor cells and host cells in the tumor microenvironment dictates the development of all cancers. In breast cancer, malignant cells educate host macrophages to adopt a protumorigenic phenotype. In this study, we show how the integrin-regulatory protein kindlin-2 (FERMT2) promotes metastatic progression of breast cancer through the recruitment and subversion of host macrophages. Kindlin-2 expression was elevated in breast cancer biopsy tissues where its levels correlated with reduced patient survival. On the basis of these observations, we used CRISPR/Cas9 technology to ablate Kindlin-2 expression in human MDA-MB-231 and murine 4T1 breast cancer cells. Kindlin-2 deficiency inhibited invasive and migratory properties without affecting proliferation rates. However, tumor outgrowth was inhibited by >80% in a manner associated with reduced macrophage infiltration and secretion of the macrophage attractant and growth factor colony-stimulating factor-1 (CSF-1). The observed loss of CSF-1 appeared to be caused by a more proximal deficiency in TGFβ-dependent signaling in Kindlin-2-deficient cells. Collectively, our results illuminate a Kindlin-2/TGFβ/CSF-1 signaling axis employed by breast cancer cells to capture host macrophage functions that drive tumor progression. .
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.CAN-16-2337