High temperature in-situ synchrotron-based XRD study on the crystal structure evolution of C/C composite impregnated by FLiNaK molten salt

An in-situ real-time synchrotron-based grazing incidence X-ray diffraction was systematically used to investigate the crystal structural evolution of carbon fiber reinforced carbon matrix (C/C) composite impregnated with FLiNaK molten salt during the heat-treatment process. It was found that the cry...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-09, Vol.7 (1), p.10673-10, Article 10673
Hauptverfasser: Feng, Shanglei, Yang, Yingguo, Li, Li, Zhang, Dongsheng, Yang, Xinmei, Xia, Huihao, Yan, Long, Tsang, Derek K. L., Huai, Ping, Zhou, Xingtai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An in-situ real-time synchrotron-based grazing incidence X-ray diffraction was systematically used to investigate the crystal structural evolution of carbon fiber reinforced carbon matrix (C/C) composite impregnated with FLiNaK molten salt during the heat-treatment process. It was found that the crystallographic thermal expansion and contraction rate of interlayer spacing d 002 in C/C composite with FLiNaK salt impregnation is smaller than that in the virgin sample, indicating the suppression on interlayer spacing from FLiNaK salt impregnated. Meanwhile the crystallite size L C002 of C/C composite with FLiNaK salt impregnation is larger than the virgin one after whole heat treatment process, indicating that FLiNaK salt impregnation could facilitate the crystallization of C/C composite after heat treatment process. This improved crystallization in C/C composite with FLiNaK salt impregnation suggests the synthetic action of the salt squeeze effect on crooked carbon layer and the release of internal residual stress after heating-cooling process. Thus, the present study not only contribute to reveal the interaction mechanism between C/C composite and FLiNaK salt in high temperature environment, but also promote the design of safer and more reliable C/C composite materials for the next generation molten salt reactor.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-11033-2