Long-Lived 13C2 Nuclear Spin States Hyperpolarized by Parahydrogen in Reversible Exchange at Micro-Tesla Fields
Parahydrogen is an inexpensive and readily available source of hyperpolarization used to enhance magnetic resonance signals by up to 4 orders of magnitude above thermal signals obtained at ~10 T. A significant challenge for applications is fast signal decay after hyperpolarization. Here, we use para...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2017-06, Vol.8 (13), p.3008-3014 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Parahydrogen is an inexpensive and readily available source of hyperpolarization used to enhance magnetic resonance signals by up to 4 orders of magnitude above thermal signals obtained at ~10 T. A significant challenge for applications is fast signal decay after hyperpolarization. Here, we use parahydrogen based polarization transfer catalysis at micro-Tesla fields (first introduced as SABRE-SHEATH) to hyperpolarize
13
C
2
spin pairs and find decay time constants of 12 s for magnetization at 0.3 mT, which are extended to 2 minutes at that same field, when long-lived singlet states are hyperpolarized instead. Enhancements over thermal at 8.5 T are between 30 and 170 fold (0.02% to 0.12% polarization). We control the spin dynamics of polarization transfer by choice of μT field allowing for deliberate hyperpolarization of either magnetization or long-lived singlet states. Density functional theory (DFT) calculations and experimental evidence identify two energetically close mechanisms for polarization transfer: First, a model that involves direct binding of the
13
C
2
pair to the polarization transfer catalyst (PTC), and second, a model transferring polarization through auxiliary protons in substrates. |
---|---|
ISSN: | 1948-7185 |
DOI: | 10.1021/acs.jpclett.7b00987 |