The Variation Analysis of DNA Methylation in Wheat Carrying Gametocidal Chromosome 3C from Aegilops triuncialis

Gametocidal (Gc) chromosomes can ensure their preferential transmission by killing the gametes without themselves through causing chromosome breakage and therefore have been exploited as an effective tool for genetic breeding. However, to date very little is known about the molecular mechanism of Gc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2017-08, Vol.18 (8), p.1738
Hauptverfasser: Wang, Dan, Zhao, Jieyu, Bai, Yan, Ao, You, Guo, Changhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gametocidal (Gc) chromosomes can ensure their preferential transmission by killing the gametes without themselves through causing chromosome breakage and therefore have been exploited as an effective tool for genetic breeding. However, to date very little is known about the molecular mechanism of Gc action. In this study, we used methylation-sensitive amplified polymorphism (MSAP) technique to assess the extent and pattern of cytosine methylation alterations at the whole genome level between two lines of wheat Gc addition line and their common wheat parent. The results indicated that the overall levels of cytosine methylation of two studied Gc addition lines (CS-3C and CS-3C3C, 48.68% and 48.65%, respectively) were significantly increased when compared to common wheat CS (41.31%) and no matter fully methylated or hemimethylated rates enhanced in Gc addition lines. A set of 30 isolated fragments that showed different DNA methylation or demethylation patterns between the three lines were sequenced and the results indicated that 8 fragments showed significant homology to known sequences, of which three were homologous to MITE transposon (Miniature inverted-repeat transposable elements), LTR-retrotransposon and retrotransposon , respectively. Overall, our results showed that DNA methylation could play a role in the Gc action.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms18081738