Noninvasive Imaging of Ras Activity by Monomolecular Biosensor Based on Split-Luciferase Complementary Assay
Deregulated activity of Ras GTPases has been observed in many types of human cancers, and contributes to the diverse aspects of carcinogenesis. Although the significance in tumorigenesis has been widely accepted and many therapeutic drugs are under development, little attention has been dedicated to...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2017-08, Vol.7 (1), p.9945-10, Article 9945 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Deregulated activity of Ras GTPases has been observed in many types of human cancers, and contributes to the diverse aspects of carcinogenesis. Although the significance in tumorigenesis has been widely accepted and many therapeutic drugs are under development, little attention has been dedicated to the development of sensors for the Ras activity
in vivo
. Therefore, based on the split
firefly
luciferase complementation strategy, we developed a monomolecular bioluminescent biosensor to image endogenous Ras activity in living subject. In this biosensor, two inactive luciferase fragments are sandwiched by Raf-1, whose conformation changes upon GTP-Ras binding. Thus, the Ras activity can be surrogated by the intensity of the complementary luciferase. The bioluminescence analyses demonstrated that this novel biosensor behaved the robust and sensitive reporting efficiency in response to the dynamical changes of Ras activity, both in living colorectal cancer cells and
in vivo
. Compared to the traditional method, such as the pull-down assay, the bioluminescent sensor is simply, noninvasive, faster and more sensitive for the analysis of the endogenous Ras activity. This innovative work opens up the way for monitoring the preclinical curative effect and high-throughput screening of therapeutic drugs targeting Ras pathways. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-017-08358-3 |