Oligodeoxynucleotides covalently linked to intercalating dyes as base sequence‐specific ligands. Influence of dye attachment site
New molecules with high and specific affinity for nucleic acid base sequences have been synthesized. They involve an oligodeoxynucleotide covalently attached to an intercalating dye. Visible absorption spectroscopy and fluorescence have been used to investigate the binding of poly(rA) to octadeoxyth...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 1984-04, Vol.3 (4), p.795-800 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | New molecules with high and specific affinity for nucleic acid base sequences have been synthesized. They involve an oligodeoxynucleotide covalently attached to an intercalating dye. Visible absorption spectroscopy and fluorescence have been used to investigate the binding of poly(rA) to octadeoxythymidylates substituted by a 9‐aminoacridine derivative in different positions along the oligonucleotide chain. The 9‐amino group of the acridine dye was linked through a polymethylene bridge to the 3′‐phosphate, the 5′‐phosphate, the fourth internucleotidic phosphate or to both the 3′‐ and 5′‐phosphates. Different interactions of the acridine dye were exhibited by these different substituted oligodeoxynucleotides when they bind to poly(rA). The interaction was shown to be specific for adenine‐containing polynucleotides. The stability of these complexes was compared with that of oligodeoxynucleotides substituted by an alkyl group on the 3′‐phosphate. The increase in stability due to the presence of the intercalating dye has been determined from the comparison of melting temperatures. These results are discussed with respect to the strategy of synthesis of a new class of molecules with high affinity and high specificity for nucleic acid base sequences. |
---|---|
ISSN: | 0261-4189 1460-2075 |
DOI: | 10.1002/j.1460-2075.1984.tb01887.x |