The Histidine Residue of QseC Is Required for Canonical Signaling between QseB and PmrB in Uropathogenic Escherichia coli
Two-component systems are prototypically comprised of a histidine kinase (sensor) and a response regulator (responder). The sensor kinases autophosphorylate at a conserved histidine residue, acting as a phosphodonor for subsequent phosphotransfer to and activation of a cognate response regulator. In...
Gespeichert in:
Veröffentlicht in: | Journal of bacteriology 2017-09, Vol.199 (18) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two-component systems are prototypically comprised of a histidine kinase (sensor) and a response regulator (responder). The sensor kinases autophosphorylate at a conserved histidine residue, acting as a phosphodonor for subsequent phosphotransfer to and activation of a cognate response regulator. In rare cases, the histidine residue is also essential for response regulator dephosphorylation via a reverse-phosphotransfer reaction. In this work, we present an example of a kinase that relies on reverse phosphotransfer to catalyze the dephosphorylation of its cognate partner. The QseC sensor kinase is conserved across several Gram-negative pathogens; its interaction with its cognate partner QseB is critical for maintaining pathogenic potential. Here, we demonstrate that QseC-mediated dephosphorylation of QseB occurs via reverse phosphotransfer. In previous studies, we demonstrated that, in uropathogenic
, exposure to high concentrations of ferric iron (Fe
) stimulates the PmrB sensor kinase. This stimulation, in turn, activates the cognate partner, PmrA, and noncognate QseB to enhance tolerance to polymyxin B. We demonstrate that in the absence of signal, kinase-inactive QseC variants, in which the H246 residue was changed to alanine (A) aspartate (D) or leucine (L), rescued a Δ
deletion mutant, suggesting that QseC can control QseB activation via a mechanism that is independent of reverse phosphotransfer. However, in the presence of Fe
, the same QseC variants were unable to mediate a wild-type stimulus response, indicating that QseC-mediated dephosphorylation is required for maintaining proper QseB-PmrB-PmrA interactions.
Two-component signaling networks constitute one of the predominant methods by which bacteria sense and respond to their changing environments. Two-component systems allow bacteria to thrive and survive in a number of different environments, including within a human host. Uropathogenic
, the causative agent of urinary tract infections, rely on two interacting two-component systems, QseBC and PmrAB, to induce intrinsic resistance to the colistin antibiotic polymyxin B, which is a last line of defense drug. The presence of one sensor kinase, QseC, is required to regulate the interaction between the other sensor kinase, PmrB and the response regulators from both systems, QseB and PmrA, effectively creating a "four-component" system required for virulence. Understanding the important role of the sensor kinase QseC will provide insight into addit |
---|---|
ISSN: | 0021-9193 1098-5530 |
DOI: | 10.1128/JB.00060-17 |