Ligand Field Strength Mediates Electron Delocalization in Octahedral [(HL)2Fe6(L′) m ] n+ Clusters
To assess the impact of terminal ligand binding on a variety of cluster properties (redox delocalization, ground-state stabilization, and breadth of redox state accessibility), we prepared three electron-transfer series based on the hexanuclear iron cluster [(HL)2Fe6(L′) m ] n+ in which the terminal...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2015-09, Vol.137 (34), p.11126-11143 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To assess the impact of terminal ligand binding on a variety of cluster properties (redox delocalization, ground-state stabilization, and breadth of redox state accessibility), we prepared three electron-transfer series based on the hexanuclear iron cluster [(HL)2Fe6(L′) m ] n+ in which the terminal ligand field strength was modulated from weak to strong (L′ = DMF, MeCN, CN). The extent of intracore M–M interactions is gauged by M–M distances, spin ground state persistence, and preference for mixed-valence states as determined by electrochemical comproportionation constants. Coordination of DMF to the [(HL)2Fe6] core leads to weaker Fe–Fe interactions, as manifested by the observation of ground states populated only at lower temperatures ( |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.5b06453 |