Estimation of the cumulative incidence function under multiple dependent and independent censoring mechanisms
Competing risks occur in a time-to-event analysis in which a patient can experience one of several types of events. Traditional methods for handling competing risks data presuppose one censoring process, which is assumed to be independent. In a controlled clinical trial, censoring can occur for seve...
Gespeichert in:
Veröffentlicht in: | Lifetime data analysis 2018-04, Vol.24 (2), p.201-223 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Competing risks occur in a time-to-event analysis in which a patient can experience one of several types of events. Traditional methods for handling competing risks data presuppose one censoring process, which is assumed to be independent. In a controlled clinical trial, censoring can occur for several reasons: some independent, others dependent. We propose an estimator of the cumulative incidence function in the presence of both independent and dependent censoring mechanisms. We rely on semi-parametric theory to derive an augmented inverse probability of censoring weighted (AIPCW) estimator. We demonstrate the efficiency gained when using the AIPCW estimator compared to a non-augmented estimator via simulations. We then apply our method to evaluate the safety and efficacy of three anti-HIV regimens in a randomized trial conducted by the AIDS Clinical Trial Group, ACTG A5095. |
---|---|
ISSN: | 1380-7870 1572-9249 |
DOI: | 10.1007/s10985-017-9393-4 |