Lipid-based carriers of microRNAs and intercellular communication
Extracellular microRNAs (miRNAs) are uniquely stable in plasma, and the levels of specific circulating miRNAs can differ with disease. Extracellular miRNAs are associated with lipid-based carriers and lipid-free proteins. miRNAs can be transferred from cell-to-cell by lipid-based carriers and affect...
Gespeichert in:
Veröffentlicht in: | Current opinion in lipidology 2012-04, Vol.23 (2), p.91-97 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Extracellular microRNAs (miRNAs) are uniquely stable in plasma, and the levels of specific circulating miRNAs can differ with disease. Extracellular miRNAs are associated with lipid-based carriers and lipid-free proteins. miRNAs can be transferred from cell-to-cell by lipid-based carriers and affect gene expression. This review summarizes recent studies that demonstrate the transfer of miRNA between cells and their potential role in intercellular communication.
Microvesicles, exosomes, apoptotic bodies, lipoproteins, and large microparticles contain miRNAs. Recent studies have demonstrated that miRNAs are transferred between dendritic cells, hepatocellular carcinoma cells, and adipocytes in lipid-based carriers. miRNAs are also transferred from T cells to antigen-presenting cells, from stem cells to endothelial cells and fibroblasts, from macrophages to breast cancer cells, and from epithelial cells to hepatocytes in lipid-based carriers. The cellular export of miRNAs in lipid-based carriers is regulated by the ceramide pathway, and the delivery of lipid-associated miRNAs to recipient cells is achieved by various routes, including endocytotic uptake, membrane-fusion, and scavenger receptors.
Cellular miRNAs are exported in and to lipid-based carriers (vesicles and lipoprotein particles) and transferred to recipient cells with gene expression changes as intercellular communication. |
---|---|
ISSN: | 0957-9672 1473-6535 |
DOI: | 10.1097/MOL.0b013e328350a425 |