Can local adaptation explain varying patterns of herbivory tolerance in a recently introduced woody plant in North America?

Patterns of woody-plant mortality often reflect tradeoffs associated with resource allocation. Plants that allocate a high proportion of carbon acquired from photosynthesis to non-structural carbohydrate storage may be buffered from the synergistic effects of climate change and episodic disturbance....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Conservation physiology 2017, Vol.5 (1), p.cox016-cox016
Hauptverfasser: Long, Randall W., Bush, Susan E., Grady, Kevin C., Smith, David S., Potts, Daniel L., D'Antonio, Carla M., Dudley, Tom L., Fehlberg, Shannon D., Gaskin, John F., Glenn, Edward P., Hultine, Kevin R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Patterns of woody-plant mortality often reflect tradeoffs associated with resource allocation. Plants that allocate a high proportion of carbon acquired from photosynthesis to non-structural carbohydrate storage may be buffered from the synergistic effects of climate change and episodic disturbance.AbstractPatterns of woody-plant mortality have been linked to global-scale environmental changes, such as extreme drought, heat stress, more frequent and intense fires, and episodic outbreaks of insects and pathogens. Although many studies have focussed on survival and mortality in response to specific physiological stresses, little attention has been paid to the role of genetic heritability of traits and local adaptation in influencing patterns of plant mortality, especially in non-native species. Tamarix spp. is a dominant, non-native riparian tree in western North America that is experiencing dieback in some areas of its range due to episodic herbivory by the recently introduced northern tamarisk leaf beetle (Diorhabda carinulata). We propose that genotype × environment interactions largely underpin current and future patterns of Tamarix mortality. We anticipate that (i) despite its recent introduction, and the potential for significant gene flow, Tamarix in western North America is generally adapted to local environmental conditions across its current range in part due to hybridization of two species; (ii) local adaptation to specific climate, soil and resource availability will yield predictable responses to episodic herbivory; and (iii) the ability to cope with a combination of episodic herbivory and increased aridity associated with climate change will be largely based on functional tradeoffs in resource allocation. This review focusses on the potential heritability of plant carbon allocation patterns in Tamarix, focussing on the relative contribution of acquired carbon to non-structural carbohydrate (NSC) pools versus other sinks as the basis for surviving episodic disturbance. Where high aridity and/or poor edaphic position lead to chronic stress, NSC pools may fall below a minimum threshold because of an imbalance between the supply of carbon and its demand by various sinks. Identifying patterns of local adaptation of traits related to resource allocation will improve forecasting of Tamarix population susceptibility to episodic herbivory.
ISSN:2051-1434
2051-1434
DOI:10.1093/conphys/cox016