Model simulation and experimental validation of intratumoral chemotherapy using multiple polymer implants
Radiofrequency ablation has emerged as a minimally invasive option for liver cancer treatment, but local tumor recurrence is common. To eliminate residual tumor cells in the ablated tumor, biodegradable polymer millirods have been designed for local drug (e.g., doxorubicin) delivery. A limitation of...
Gespeichert in:
Veröffentlicht in: | Medical & biological engineering & computing 2008-10, Vol.46 (10), p.1039-1049 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1049 |
---|---|
container_issue | 10 |
container_start_page | 1039 |
container_title | Medical & biological engineering & computing |
container_volume | 46 |
creator | Weinberg, Brent D. Patel, Ravi B. Wu, Hanping Blanco, Elvin Barnett, Carlton C. Exner, Agata A. Saidel, Gerald M. Gao, Jinming |
description | Radiofrequency ablation has emerged as a minimally invasive option for liver cancer treatment, but local tumor recurrence is common. To eliminate residual tumor cells in the ablated tumor, biodegradable polymer millirods have been designed for local drug (e.g., doxorubicin) delivery. A limitation of this method has been the extent of drug penetration into the tumor ( |
doi_str_mv | 10.1007/s11517-008-0354-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5565878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21312938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-ca44bb04224c90ca5c933eafba3280956469ec75abc622ef244ae91e843c97d53</originalsourceid><addsrcrecordid>eNqFkk2L1TAUhoMoznX0B7iR4sJdNScfbbIRZPALRtzoOqTp6b0Z0qYm7eD99-bSi46CzOos3ue854OXkOdAXwOl7ZsMIKGtKVU15VLU7QOyg1ZATYUQD8mOgqA1BVAX5EnON5QykEw8JhegJOMK2h3xX2KPocp-XINdfJwqO_UV_pwx-RGnxYbq1gbfb1ocKj8tyS7rGFOR3AHHuBww2flYrdlP-6r4LH4OWM0xHEdMlR_nYKclPyWPBhsyPjvXS_L9w_tvV5_q668fP1-9u66dZHqpnRWi66hgTDhNnZVOc4526CxnimrZiEaja6XtXMMYDkwIixpQCe5020t-Sd5uvvPajdg7PC0czFzuseloovXmb2XyB7OPt0bKRqpWFYNXZ4MUf6yYFzP67DCUKzCu2TRaqoaVre4DecOV5JrdCzLgUAxPo1_-A97ENU3lXQY0l6BZ0xQINsilmHPC4fdtQM0pF2bLhSm5MKdcmLb0vLj7lD8d5yAUgG1ALtK0x3Rn8n9dfwGZfcY4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>193519266</pqid></control><display><type>article</type><title>Model simulation and experimental validation of intratumoral chemotherapy using multiple polymer implants</title><source>MEDLINE</source><source>Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Weinberg, Brent D. ; Patel, Ravi B. ; Wu, Hanping ; Blanco, Elvin ; Barnett, Carlton C. ; Exner, Agata A. ; Saidel, Gerald M. ; Gao, Jinming</creator><creatorcontrib>Weinberg, Brent D. ; Patel, Ravi B. ; Wu, Hanping ; Blanco, Elvin ; Barnett, Carlton C. ; Exner, Agata A. ; Saidel, Gerald M. ; Gao, Jinming</creatorcontrib><description>Radiofrequency ablation has emerged as a minimally invasive option for liver cancer treatment, but local tumor recurrence is common. To eliminate residual tumor cells in the ablated tumor, biodegradable polymer millirods have been designed for local drug (e.g., doxorubicin) delivery. A limitation of this method has been the extent of drug penetration into the tumor (<5 mm), especially in the peripheral tumor rim where thermal ablation is less effective. To provide drug concentration above the therapeutic level as needed throughout a large tumor, implant strategies with multiple millirods were devised using a computational model. This dynamic, 3-D mass balance model of drug distribution in tissue was used to simulate the consequences of various numbers of implants in different locations. Experimental testing of model predictions was performed in a rabbit VX2 carcinoma model. This study demonstrates the value of multiple implants to provide therapeutic drug levels in large ablated tumors.</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-008-0354-7</identifier><identifier>PMID: 18523817</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Ablation ; Absorbable Implants ; Animals ; Antineoplastic Agents - administration & dosage ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Brain cancer ; Cancer therapies ; Catheter Ablation - methods ; Chemotherapy ; Combined Modality Therapy ; Computer Applications ; Design ; Drug Implants ; Human Physiology ; Imaging ; Liver cancer ; Liver Neoplasms - drug therapy ; Liver Neoplasms - surgery ; Mathematical models ; Models, Biological ; Original Article ; Polymers ; Prostate ; Rabbits ; Radiation therapy ; Radiology ; Simulation ; Studies ; Transplants & implants ; Tumors</subject><ispartof>Medical & biological engineering & computing, 2008-10, Vol.46 (10), p.1039-1049</ispartof><rights>International Federation for Medical and Biological Engineering 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-ca44bb04224c90ca5c933eafba3280956469ec75abc622ef244ae91e843c97d53</citedby><cites>FETCH-LOGICAL-c529t-ca44bb04224c90ca5c933eafba3280956469ec75abc622ef244ae91e843c97d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-008-0354-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-008-0354-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18523817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weinberg, Brent D.</creatorcontrib><creatorcontrib>Patel, Ravi B.</creatorcontrib><creatorcontrib>Wu, Hanping</creatorcontrib><creatorcontrib>Blanco, Elvin</creatorcontrib><creatorcontrib>Barnett, Carlton C.</creatorcontrib><creatorcontrib>Exner, Agata A.</creatorcontrib><creatorcontrib>Saidel, Gerald M.</creatorcontrib><creatorcontrib>Gao, Jinming</creatorcontrib><title>Model simulation and experimental validation of intratumoral chemotherapy using multiple polymer implants</title><title>Medical & biological engineering & computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>Radiofrequency ablation has emerged as a minimally invasive option for liver cancer treatment, but local tumor recurrence is common. To eliminate residual tumor cells in the ablated tumor, biodegradable polymer millirods have been designed for local drug (e.g., doxorubicin) delivery. A limitation of this method has been the extent of drug penetration into the tumor (<5 mm), especially in the peripheral tumor rim where thermal ablation is less effective. To provide drug concentration above the therapeutic level as needed throughout a large tumor, implant strategies with multiple millirods were devised using a computational model. This dynamic, 3-D mass balance model of drug distribution in tissue was used to simulate the consequences of various numbers of implants in different locations. Experimental testing of model predictions was performed in a rabbit VX2 carcinoma model. This study demonstrates the value of multiple implants to provide therapeutic drug levels in large ablated tumors.</description><subject>Ablation</subject><subject>Absorbable Implants</subject><subject>Animals</subject><subject>Antineoplastic Agents - administration & dosage</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Brain cancer</subject><subject>Cancer therapies</subject><subject>Catheter Ablation - methods</subject><subject>Chemotherapy</subject><subject>Combined Modality Therapy</subject><subject>Computer Applications</subject><subject>Design</subject><subject>Drug Implants</subject><subject>Human Physiology</subject><subject>Imaging</subject><subject>Liver cancer</subject><subject>Liver Neoplasms - drug therapy</subject><subject>Liver Neoplasms - surgery</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Original Article</subject><subject>Polymers</subject><subject>Prostate</subject><subject>Rabbits</subject><subject>Radiation therapy</subject><subject>Radiology</subject><subject>Simulation</subject><subject>Studies</subject><subject>Transplants & implants</subject><subject>Tumors</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkk2L1TAUhoMoznX0B7iR4sJdNScfbbIRZPALRtzoOqTp6b0Z0qYm7eD99-bSi46CzOos3ue854OXkOdAXwOl7ZsMIKGtKVU15VLU7QOyg1ZATYUQD8mOgqA1BVAX5EnON5QykEw8JhegJOMK2h3xX2KPocp-XINdfJwqO_UV_pwx-RGnxYbq1gbfb1ocKj8tyS7rGFOR3AHHuBww2flYrdlP-6r4LH4OWM0xHEdMlR_nYKclPyWPBhsyPjvXS_L9w_tvV5_q668fP1-9u66dZHqpnRWi66hgTDhNnZVOc4526CxnimrZiEaja6XtXMMYDkwIixpQCe5020t-Sd5uvvPajdg7PC0czFzuseloovXmb2XyB7OPt0bKRqpWFYNXZ4MUf6yYFzP67DCUKzCu2TRaqoaVre4DecOV5JrdCzLgUAxPo1_-A97ENU3lXQY0l6BZ0xQINsilmHPC4fdtQM0pF2bLhSm5MKdcmLb0vLj7lD8d5yAUgG1ALtK0x3Rn8n9dfwGZfcY4</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Weinberg, Brent D.</creator><creator>Patel, Ravi B.</creator><creator>Wu, Hanping</creator><creator>Blanco, Elvin</creator><creator>Barnett, Carlton C.</creator><creator>Exner, Agata A.</creator><creator>Saidel, Gerald M.</creator><creator>Gao, Jinming</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081001</creationdate><title>Model simulation and experimental validation of intratumoral chemotherapy using multiple polymer implants</title><author>Weinberg, Brent D. ; Patel, Ravi B. ; Wu, Hanping ; Blanco, Elvin ; Barnett, Carlton C. ; Exner, Agata A. ; Saidel, Gerald M. ; Gao, Jinming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-ca44bb04224c90ca5c933eafba3280956469ec75abc622ef244ae91e843c97d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Ablation</topic><topic>Absorbable Implants</topic><topic>Animals</topic><topic>Antineoplastic Agents - administration & dosage</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Brain cancer</topic><topic>Cancer therapies</topic><topic>Catheter Ablation - methods</topic><topic>Chemotherapy</topic><topic>Combined Modality Therapy</topic><topic>Computer Applications</topic><topic>Design</topic><topic>Drug Implants</topic><topic>Human Physiology</topic><topic>Imaging</topic><topic>Liver cancer</topic><topic>Liver Neoplasms - drug therapy</topic><topic>Liver Neoplasms - surgery</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Original Article</topic><topic>Polymers</topic><topic>Prostate</topic><topic>Rabbits</topic><topic>Radiation therapy</topic><topic>Radiology</topic><topic>Simulation</topic><topic>Studies</topic><topic>Transplants & implants</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weinberg, Brent D.</creatorcontrib><creatorcontrib>Patel, Ravi B.</creatorcontrib><creatorcontrib>Wu, Hanping</creatorcontrib><creatorcontrib>Blanco, Elvin</creatorcontrib><creatorcontrib>Barnett, Carlton C.</creatorcontrib><creatorcontrib>Exner, Agata A.</creatorcontrib><creatorcontrib>Saidel, Gerald M.</creatorcontrib><creatorcontrib>Gao, Jinming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Medical & biological engineering & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weinberg, Brent D.</au><au>Patel, Ravi B.</au><au>Wu, Hanping</au><au>Blanco, Elvin</au><au>Barnett, Carlton C.</au><au>Exner, Agata A.</au><au>Saidel, Gerald M.</au><au>Gao, Jinming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model simulation and experimental validation of intratumoral chemotherapy using multiple polymer implants</atitle><jtitle>Medical & biological engineering & computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2008-10-01</date><risdate>2008</risdate><volume>46</volume><issue>10</issue><spage>1039</spage><epage>1049</epage><pages>1039-1049</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>Radiofrequency ablation has emerged as a minimally invasive option for liver cancer treatment, but local tumor recurrence is common. To eliminate residual tumor cells in the ablated tumor, biodegradable polymer millirods have been designed for local drug (e.g., doxorubicin) delivery. A limitation of this method has been the extent of drug penetration into the tumor (<5 mm), especially in the peripheral tumor rim where thermal ablation is less effective. To provide drug concentration above the therapeutic level as needed throughout a large tumor, implant strategies with multiple millirods were devised using a computational model. This dynamic, 3-D mass balance model of drug distribution in tissue was used to simulate the consequences of various numbers of implants in different locations. Experimental testing of model predictions was performed in a rabbit VX2 carcinoma model. This study demonstrates the value of multiple implants to provide therapeutic drug levels in large ablated tumors.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>18523817</pmid><doi>10.1007/s11517-008-0354-7</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-0118 |
ispartof | Medical & biological engineering & computing, 2008-10, Vol.46 (10), p.1039-1049 |
issn | 0140-0118 1741-0444 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5565878 |
source | MEDLINE; Business Source Complete; Springer Nature - Complete Springer Journals |
subjects | Ablation Absorbable Implants Animals Antineoplastic Agents - administration & dosage Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Brain cancer Cancer therapies Catheter Ablation - methods Chemotherapy Combined Modality Therapy Computer Applications Design Drug Implants Human Physiology Imaging Liver cancer Liver Neoplasms - drug therapy Liver Neoplasms - surgery Mathematical models Models, Biological Original Article Polymers Prostate Rabbits Radiation therapy Radiology Simulation Studies Transplants & implants Tumors |
title | Model simulation and experimental validation of intratumoral chemotherapy using multiple polymer implants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A34%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20simulation%20and%20experimental%20validation%20of%20intratumoral%20chemotherapy%20using%20multiple%20polymer%20implants&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Weinberg,%20Brent%20D.&rft.date=2008-10-01&rft.volume=46&rft.issue=10&rft.spage=1039&rft.epage=1049&rft.pages=1039-1049&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-008-0354-7&rft_dat=%3Cproquest_pubme%3E21312938%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=193519266&rft_id=info:pmid/18523817&rfr_iscdi=true |