Model simulation and experimental validation of intratumoral chemotherapy using multiple polymer implants

Radiofrequency ablation has emerged as a minimally invasive option for liver cancer treatment, but local tumor recurrence is common. To eliminate residual tumor cells in the ablated tumor, biodegradable polymer millirods have been designed for local drug (e.g., doxorubicin) delivery. A limitation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical & biological engineering & computing 2008-10, Vol.46 (10), p.1039-1049
Hauptverfasser: Weinberg, Brent D., Patel, Ravi B., Wu, Hanping, Blanco, Elvin, Barnett, Carlton C., Exner, Agata A., Saidel, Gerald M., Gao, Jinming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1049
container_issue 10
container_start_page 1039
container_title Medical & biological engineering & computing
container_volume 46
creator Weinberg, Brent D.
Patel, Ravi B.
Wu, Hanping
Blanco, Elvin
Barnett, Carlton C.
Exner, Agata A.
Saidel, Gerald M.
Gao, Jinming
description Radiofrequency ablation has emerged as a minimally invasive option for liver cancer treatment, but local tumor recurrence is common. To eliminate residual tumor cells in the ablated tumor, biodegradable polymer millirods have been designed for local drug (e.g., doxorubicin) delivery. A limitation of this method has been the extent of drug penetration into the tumor (
doi_str_mv 10.1007/s11517-008-0354-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5565878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21312938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-ca44bb04224c90ca5c933eafba3280956469ec75abc622ef244ae91e843c97d53</originalsourceid><addsrcrecordid>eNqFkk2L1TAUhoMoznX0B7iR4sJdNScfbbIRZPALRtzoOqTp6b0Z0qYm7eD99-bSi46CzOos3ue854OXkOdAXwOl7ZsMIKGtKVU15VLU7QOyg1ZATYUQD8mOgqA1BVAX5EnON5QykEw8JhegJOMK2h3xX2KPocp-XINdfJwqO_UV_pwx-RGnxYbq1gbfb1ocKj8tyS7rGFOR3AHHuBww2flYrdlP-6r4LH4OWM0xHEdMlR_nYKclPyWPBhsyPjvXS_L9w_tvV5_q668fP1-9u66dZHqpnRWi66hgTDhNnZVOc4526CxnimrZiEaja6XtXMMYDkwIixpQCe5020t-Sd5uvvPajdg7PC0czFzuseloovXmb2XyB7OPt0bKRqpWFYNXZ4MUf6yYFzP67DCUKzCu2TRaqoaVre4DecOV5JrdCzLgUAxPo1_-A97ENU3lXQY0l6BZ0xQINsilmHPC4fdtQM0pF2bLhSm5MKdcmLb0vLj7lD8d5yAUgG1ALtK0x3Rn8n9dfwGZfcY4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>193519266</pqid></control><display><type>article</type><title>Model simulation and experimental validation of intratumoral chemotherapy using multiple polymer implants</title><source>MEDLINE</source><source>Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Weinberg, Brent D. ; Patel, Ravi B. ; Wu, Hanping ; Blanco, Elvin ; Barnett, Carlton C. ; Exner, Agata A. ; Saidel, Gerald M. ; Gao, Jinming</creator><creatorcontrib>Weinberg, Brent D. ; Patel, Ravi B. ; Wu, Hanping ; Blanco, Elvin ; Barnett, Carlton C. ; Exner, Agata A. ; Saidel, Gerald M. ; Gao, Jinming</creatorcontrib><description>Radiofrequency ablation has emerged as a minimally invasive option for liver cancer treatment, but local tumor recurrence is common. To eliminate residual tumor cells in the ablated tumor, biodegradable polymer millirods have been designed for local drug (e.g., doxorubicin) delivery. A limitation of this method has been the extent of drug penetration into the tumor (&lt;5 mm), especially in the peripheral tumor rim where thermal ablation is less effective. To provide drug concentration above the therapeutic level as needed throughout a large tumor, implant strategies with multiple millirods were devised using a computational model. This dynamic, 3-D mass balance model of drug distribution in tissue was used to simulate the consequences of various numbers of implants in different locations. Experimental testing of model predictions was performed in a rabbit VX2 carcinoma model. This study demonstrates the value of multiple implants to provide therapeutic drug levels in large ablated tumors.</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-008-0354-7</identifier><identifier>PMID: 18523817</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Ablation ; Absorbable Implants ; Animals ; Antineoplastic Agents - administration &amp; dosage ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Brain cancer ; Cancer therapies ; Catheter Ablation - methods ; Chemotherapy ; Combined Modality Therapy ; Computer Applications ; Design ; Drug Implants ; Human Physiology ; Imaging ; Liver cancer ; Liver Neoplasms - drug therapy ; Liver Neoplasms - surgery ; Mathematical models ; Models, Biological ; Original Article ; Polymers ; Prostate ; Rabbits ; Radiation therapy ; Radiology ; Simulation ; Studies ; Transplants &amp; implants ; Tumors</subject><ispartof>Medical &amp; biological engineering &amp; computing, 2008-10, Vol.46 (10), p.1039-1049</ispartof><rights>International Federation for Medical and Biological Engineering 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-ca44bb04224c90ca5c933eafba3280956469ec75abc622ef244ae91e843c97d53</citedby><cites>FETCH-LOGICAL-c529t-ca44bb04224c90ca5c933eafba3280956469ec75abc622ef244ae91e843c97d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-008-0354-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-008-0354-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18523817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weinberg, Brent D.</creatorcontrib><creatorcontrib>Patel, Ravi B.</creatorcontrib><creatorcontrib>Wu, Hanping</creatorcontrib><creatorcontrib>Blanco, Elvin</creatorcontrib><creatorcontrib>Barnett, Carlton C.</creatorcontrib><creatorcontrib>Exner, Agata A.</creatorcontrib><creatorcontrib>Saidel, Gerald M.</creatorcontrib><creatorcontrib>Gao, Jinming</creatorcontrib><title>Model simulation and experimental validation of intratumoral chemotherapy using multiple polymer implants</title><title>Medical &amp; biological engineering &amp; computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>Radiofrequency ablation has emerged as a minimally invasive option for liver cancer treatment, but local tumor recurrence is common. To eliminate residual tumor cells in the ablated tumor, biodegradable polymer millirods have been designed for local drug (e.g., doxorubicin) delivery. A limitation of this method has been the extent of drug penetration into the tumor (&lt;5 mm), especially in the peripheral tumor rim where thermal ablation is less effective. To provide drug concentration above the therapeutic level as needed throughout a large tumor, implant strategies with multiple millirods were devised using a computational model. This dynamic, 3-D mass balance model of drug distribution in tissue was used to simulate the consequences of various numbers of implants in different locations. Experimental testing of model predictions was performed in a rabbit VX2 carcinoma model. This study demonstrates the value of multiple implants to provide therapeutic drug levels in large ablated tumors.</description><subject>Ablation</subject><subject>Absorbable Implants</subject><subject>Animals</subject><subject>Antineoplastic Agents - administration &amp; dosage</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Brain cancer</subject><subject>Cancer therapies</subject><subject>Catheter Ablation - methods</subject><subject>Chemotherapy</subject><subject>Combined Modality Therapy</subject><subject>Computer Applications</subject><subject>Design</subject><subject>Drug Implants</subject><subject>Human Physiology</subject><subject>Imaging</subject><subject>Liver cancer</subject><subject>Liver Neoplasms - drug therapy</subject><subject>Liver Neoplasms - surgery</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Original Article</subject><subject>Polymers</subject><subject>Prostate</subject><subject>Rabbits</subject><subject>Radiation therapy</subject><subject>Radiology</subject><subject>Simulation</subject><subject>Studies</subject><subject>Transplants &amp; implants</subject><subject>Tumors</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkk2L1TAUhoMoznX0B7iR4sJdNScfbbIRZPALRtzoOqTp6b0Z0qYm7eD99-bSi46CzOos3ue854OXkOdAXwOl7ZsMIKGtKVU15VLU7QOyg1ZATYUQD8mOgqA1BVAX5EnON5QykEw8JhegJOMK2h3xX2KPocp-XINdfJwqO_UV_pwx-RGnxYbq1gbfb1ocKj8tyS7rGFOR3AHHuBww2flYrdlP-6r4LH4OWM0xHEdMlR_nYKclPyWPBhsyPjvXS_L9w_tvV5_q668fP1-9u66dZHqpnRWi66hgTDhNnZVOc4526CxnimrZiEaja6XtXMMYDkwIixpQCe5020t-Sd5uvvPajdg7PC0czFzuseloovXmb2XyB7OPt0bKRqpWFYNXZ4MUf6yYFzP67DCUKzCu2TRaqoaVre4DecOV5JrdCzLgUAxPo1_-A97ENU3lXQY0l6BZ0xQINsilmHPC4fdtQM0pF2bLhSm5MKdcmLb0vLj7lD8d5yAUgG1ALtK0x3Rn8n9dfwGZfcY4</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Weinberg, Brent D.</creator><creator>Patel, Ravi B.</creator><creator>Wu, Hanping</creator><creator>Blanco, Elvin</creator><creator>Barnett, Carlton C.</creator><creator>Exner, Agata A.</creator><creator>Saidel, Gerald M.</creator><creator>Gao, Jinming</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081001</creationdate><title>Model simulation and experimental validation of intratumoral chemotherapy using multiple polymer implants</title><author>Weinberg, Brent D. ; Patel, Ravi B. ; Wu, Hanping ; Blanco, Elvin ; Barnett, Carlton C. ; Exner, Agata A. ; Saidel, Gerald M. ; Gao, Jinming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-ca44bb04224c90ca5c933eafba3280956469ec75abc622ef244ae91e843c97d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Ablation</topic><topic>Absorbable Implants</topic><topic>Animals</topic><topic>Antineoplastic Agents - administration &amp; dosage</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Brain cancer</topic><topic>Cancer therapies</topic><topic>Catheter Ablation - methods</topic><topic>Chemotherapy</topic><topic>Combined Modality Therapy</topic><topic>Computer Applications</topic><topic>Design</topic><topic>Drug Implants</topic><topic>Human Physiology</topic><topic>Imaging</topic><topic>Liver cancer</topic><topic>Liver Neoplasms - drug therapy</topic><topic>Liver Neoplasms - surgery</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Original Article</topic><topic>Polymers</topic><topic>Prostate</topic><topic>Rabbits</topic><topic>Radiation therapy</topic><topic>Radiology</topic><topic>Simulation</topic><topic>Studies</topic><topic>Transplants &amp; implants</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weinberg, Brent D.</creatorcontrib><creatorcontrib>Patel, Ravi B.</creatorcontrib><creatorcontrib>Wu, Hanping</creatorcontrib><creatorcontrib>Blanco, Elvin</creatorcontrib><creatorcontrib>Barnett, Carlton C.</creatorcontrib><creatorcontrib>Exner, Agata A.</creatorcontrib><creatorcontrib>Saidel, Gerald M.</creatorcontrib><creatorcontrib>Gao, Jinming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Medical &amp; biological engineering &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weinberg, Brent D.</au><au>Patel, Ravi B.</au><au>Wu, Hanping</au><au>Blanco, Elvin</au><au>Barnett, Carlton C.</au><au>Exner, Agata A.</au><au>Saidel, Gerald M.</au><au>Gao, Jinming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model simulation and experimental validation of intratumoral chemotherapy using multiple polymer implants</atitle><jtitle>Medical &amp; biological engineering &amp; computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2008-10-01</date><risdate>2008</risdate><volume>46</volume><issue>10</issue><spage>1039</spage><epage>1049</epage><pages>1039-1049</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>Radiofrequency ablation has emerged as a minimally invasive option for liver cancer treatment, but local tumor recurrence is common. To eliminate residual tumor cells in the ablated tumor, biodegradable polymer millirods have been designed for local drug (e.g., doxorubicin) delivery. A limitation of this method has been the extent of drug penetration into the tumor (&lt;5 mm), especially in the peripheral tumor rim where thermal ablation is less effective. To provide drug concentration above the therapeutic level as needed throughout a large tumor, implant strategies with multiple millirods were devised using a computational model. This dynamic, 3-D mass balance model of drug distribution in tissue was used to simulate the consequences of various numbers of implants in different locations. Experimental testing of model predictions was performed in a rabbit VX2 carcinoma model. This study demonstrates the value of multiple implants to provide therapeutic drug levels in large ablated tumors.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>18523817</pmid><doi>10.1007/s11517-008-0354-7</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-0118
ispartof Medical & biological engineering & computing, 2008-10, Vol.46 (10), p.1039-1049
issn 0140-0118
1741-0444
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5565878
source MEDLINE; Business Source Complete; Springer Nature - Complete Springer Journals
subjects Ablation
Absorbable Implants
Animals
Antineoplastic Agents - administration & dosage
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Brain cancer
Cancer therapies
Catheter Ablation - methods
Chemotherapy
Combined Modality Therapy
Computer Applications
Design
Drug Implants
Human Physiology
Imaging
Liver cancer
Liver Neoplasms - drug therapy
Liver Neoplasms - surgery
Mathematical models
Models, Biological
Original Article
Polymers
Prostate
Rabbits
Radiation therapy
Radiology
Simulation
Studies
Transplants & implants
Tumors
title Model simulation and experimental validation of intratumoral chemotherapy using multiple polymer implants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A34%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20simulation%20and%20experimental%20validation%20of%20intratumoral%20chemotherapy%20using%20multiple%20polymer%20implants&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Weinberg,%20Brent%20D.&rft.date=2008-10-01&rft.volume=46&rft.issue=10&rft.spage=1039&rft.epage=1049&rft.pages=1039-1049&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-008-0354-7&rft_dat=%3Cproquest_pubme%3E21312938%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=193519266&rft_id=info:pmid/18523817&rfr_iscdi=true