The structure of vanadium nitrogenase reveals an unusual bridging ligand

The structure of vanadium nitrogenase reveals key differences from its counterpart molybdenum nitrogenase, particularly in the way it ligands its FeV cofactor, that help to explain the basis for the unique properties of these two nitrogenases. Nitrogenases catalyze the reduction of dinitrogen (N 2 )...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemical biology 2017-09, Vol.13 (9), p.956-960
Hauptverfasser: Sippel, Daniel, Einsle, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 960
container_issue 9
container_start_page 956
container_title Nature chemical biology
container_volume 13
creator Sippel, Daniel
Einsle, Oliver
description The structure of vanadium nitrogenase reveals key differences from its counterpart molybdenum nitrogenase, particularly in the way it ligands its FeV cofactor, that help to explain the basis for the unique properties of these two nitrogenases. Nitrogenases catalyze the reduction of dinitrogen (N 2 ) gas to ammonium at a complex heterometallic cofactor. This most commonly occurs at the FeMo cofactor (FeMoco), a [Mo–7Fe–9S–C] cluster whose exact reactivity and substrate-binding mode remain unknown. Alternative nitrogenases replace molybdenum with either vanadium or iron and differ in reactivity, most prominently in the ability of vanadium nitrogenase to reduce CO to hydrocarbons. Here we report the 1.35-Å structure of vanadium nitrogenase from Azotobacter vinelandii . The 240-kDa protein contains an additional α-helical subunit that is not present in molybdenum nitrogenase. The FeV cofactor (FeVco) is a [V–7Fe–8S–C] cluster with a homocitrate ligand to vanadium. Unexpectedly, it lacks one sulfide ion compared to FeMoco, which is replaced by a bridging ligand, likely a μ-1,3-carbonate. The anion fits into a pocket within the protein that is obstructed in molybdenum nitrogenase, and its different chemical character helps to rationalize the altered chemical properties of this unique N 2 - and CO-fixing enzyme.
doi_str_mv 10.1038/nchembio.2428
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5563456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1946517210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-f46a0b7dc40fec2412ddc082aa8a4f11921ee49e1189daac5bf8111ea0c777573</originalsourceid><addsrcrecordid>eNptkUFr3DAQRkVJadJtj70WQS69eCtpJdm-BEJokkKgl_QsxvLYq2BLiWQt5N9HYZMlDT2IEczjmxkeId84W3O2aX56u8W5c2EtpGg-kBOulKik1O3R4a_YMfmc0h1jG61584kci0a3gun2hFzfbpGmJWa75Ig0DHQHHnqXZ-rdEsOIHhLSiDuEKVHwNPucMky0i64fnR_p5Ebw_RfycSgEfn2pK_L38tftxXV18-fq98X5TWWVYEs1SA2sq3sr2YBWSC763rJGADQgB85bwRFli5w3bQ9gVTc0nHMEZuu6VvVmRc72ufe5m7G36JcIk7mPbob4aAI482_Hu60Zw84opTeyvBX58RIQw0PGtJjZJYvTBB5DToa3vNa6LqsU9PQdehdy9OW8QkmteC2KgxWp9pSNIaWIw2EZzsyzI_PqyDw7Kvz3txcc6FcpBVjvgVRafsT4Zux_E58AOragJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1946517210</pqid></control><display><type>article</type><title>The structure of vanadium nitrogenase reveals an unusual bridging ligand</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sippel, Daniel ; Einsle, Oliver</creator><creatorcontrib>Sippel, Daniel ; Einsle, Oliver</creatorcontrib><description>The structure of vanadium nitrogenase reveals key differences from its counterpart molybdenum nitrogenase, particularly in the way it ligands its FeV cofactor, that help to explain the basis for the unique properties of these two nitrogenases. Nitrogenases catalyze the reduction of dinitrogen (N 2 ) gas to ammonium at a complex heterometallic cofactor. This most commonly occurs at the FeMo cofactor (FeMoco), a [Mo–7Fe–9S–C] cluster whose exact reactivity and substrate-binding mode remain unknown. Alternative nitrogenases replace molybdenum with either vanadium or iron and differ in reactivity, most prominently in the ability of vanadium nitrogenase to reduce CO to hydrocarbons. Here we report the 1.35-Å structure of vanadium nitrogenase from Azotobacter vinelandii . The 240-kDa protein contains an additional α-helical subunit that is not present in molybdenum nitrogenase. The FeV cofactor (FeVco) is a [V–7Fe–8S–C] cluster with a homocitrate ligand to vanadium. Unexpectedly, it lacks one sulfide ion compared to FeMoco, which is replaced by a bridging ligand, likely a μ-1,3-carbonate. The anion fits into a pocket within the protein that is obstructed in molybdenum nitrogenase, and its different chemical character helps to rationalize the altered chemical properties of this unique N 2 - and CO-fixing enzyme.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/nchembio.2428</identifier><identifier>PMID: 28692069</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/45/49/1141 ; 631/535/1266 ; 631/92/607 ; Ammonium ; Azotobacter ; Azotobacter vinelandii - enzymology ; Binding sites ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; Bridging ; Carbonates - chemistry ; Cell Biology ; Chemical properties ; Chemistry ; Chemistry/Food Science ; Clusters ; Hydrocarbons ; Ligands ; Models, Molecular ; Molybdenum ; Molybdoferredoxin - chemistry ; Nitrogenase ; Nitrogenase - chemistry ; Oxidation-Reduction ; Sulfides ; Vanadium</subject><ispartof>Nature chemical biology, 2017-09, Vol.13 (9), p.956-960</ispartof><rights>Springer Nature America, Inc. 2017</rights><rights>Copyright Nature Publishing Group Sep 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-f46a0b7dc40fec2412ddc082aa8a4f11921ee49e1189daac5bf8111ea0c777573</citedby><cites>FETCH-LOGICAL-c520t-f46a0b7dc40fec2412ddc082aa8a4f11921ee49e1189daac5bf8111ea0c777573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchembio.2428$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchembio.2428$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28692069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sippel, Daniel</creatorcontrib><creatorcontrib>Einsle, Oliver</creatorcontrib><title>The structure of vanadium nitrogenase reveals an unusual bridging ligand</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>The structure of vanadium nitrogenase reveals key differences from its counterpart molybdenum nitrogenase, particularly in the way it ligands its FeV cofactor, that help to explain the basis for the unique properties of these two nitrogenases. Nitrogenases catalyze the reduction of dinitrogen (N 2 ) gas to ammonium at a complex heterometallic cofactor. This most commonly occurs at the FeMo cofactor (FeMoco), a [Mo–7Fe–9S–C] cluster whose exact reactivity and substrate-binding mode remain unknown. Alternative nitrogenases replace molybdenum with either vanadium or iron and differ in reactivity, most prominently in the ability of vanadium nitrogenase to reduce CO to hydrocarbons. Here we report the 1.35-Å structure of vanadium nitrogenase from Azotobacter vinelandii . The 240-kDa protein contains an additional α-helical subunit that is not present in molybdenum nitrogenase. The FeV cofactor (FeVco) is a [V–7Fe–8S–C] cluster with a homocitrate ligand to vanadium. Unexpectedly, it lacks one sulfide ion compared to FeMoco, which is replaced by a bridging ligand, likely a μ-1,3-carbonate. The anion fits into a pocket within the protein that is obstructed in molybdenum nitrogenase, and its different chemical character helps to rationalize the altered chemical properties of this unique N 2 - and CO-fixing enzyme.</description><subject>631/45/49/1141</subject><subject>631/535/1266</subject><subject>631/92/607</subject><subject>Ammonium</subject><subject>Azotobacter</subject><subject>Azotobacter vinelandii - enzymology</subject><subject>Binding sites</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Bridging</subject><subject>Carbonates - chemistry</subject><subject>Cell Biology</subject><subject>Chemical properties</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Clusters</subject><subject>Hydrocarbons</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Molybdenum</subject><subject>Molybdoferredoxin - chemistry</subject><subject>Nitrogenase</subject><subject>Nitrogenase - chemistry</subject><subject>Oxidation-Reduction</subject><subject>Sulfides</subject><subject>Vanadium</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkUFr3DAQRkVJadJtj70WQS69eCtpJdm-BEJokkKgl_QsxvLYq2BLiWQt5N9HYZMlDT2IEczjmxkeId84W3O2aX56u8W5c2EtpGg-kBOulKik1O3R4a_YMfmc0h1jG61584kci0a3gun2hFzfbpGmJWa75Ig0DHQHHnqXZ-rdEsOIHhLSiDuEKVHwNPucMky0i64fnR_p5Ebw_RfycSgEfn2pK_L38tftxXV18-fq98X5TWWVYEs1SA2sq3sr2YBWSC763rJGADQgB85bwRFli5w3bQ9gVTc0nHMEZuu6VvVmRc72ufe5m7G36JcIk7mPbob4aAI482_Hu60Zw84opTeyvBX58RIQw0PGtJjZJYvTBB5DToa3vNa6LqsU9PQdehdy9OW8QkmteC2KgxWp9pSNIaWIw2EZzsyzI_PqyDw7Kvz3txcc6FcpBVjvgVRafsT4Zux_E58AOragJw</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Sippel, Daniel</creator><creator>Einsle, Oliver</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170901</creationdate><title>The structure of vanadium nitrogenase reveals an unusual bridging ligand</title><author>Sippel, Daniel ; Einsle, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-f46a0b7dc40fec2412ddc082aa8a4f11921ee49e1189daac5bf8111ea0c777573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/45/49/1141</topic><topic>631/535/1266</topic><topic>631/92/607</topic><topic>Ammonium</topic><topic>Azotobacter</topic><topic>Azotobacter vinelandii - enzymology</topic><topic>Binding sites</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Bridging</topic><topic>Carbonates - chemistry</topic><topic>Cell Biology</topic><topic>Chemical properties</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Clusters</topic><topic>Hydrocarbons</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Molybdenum</topic><topic>Molybdoferredoxin - chemistry</topic><topic>Nitrogenase</topic><topic>Nitrogenase - chemistry</topic><topic>Oxidation-Reduction</topic><topic>Sulfides</topic><topic>Vanadium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sippel, Daniel</creatorcontrib><creatorcontrib>Einsle, Oliver</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sippel, Daniel</au><au>Einsle, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The structure of vanadium nitrogenase reveals an unusual bridging ligand</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>13</volume><issue>9</issue><spage>956</spage><epage>960</epage><pages>956-960</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>The structure of vanadium nitrogenase reveals key differences from its counterpart molybdenum nitrogenase, particularly in the way it ligands its FeV cofactor, that help to explain the basis for the unique properties of these two nitrogenases. Nitrogenases catalyze the reduction of dinitrogen (N 2 ) gas to ammonium at a complex heterometallic cofactor. This most commonly occurs at the FeMo cofactor (FeMoco), a [Mo–7Fe–9S–C] cluster whose exact reactivity and substrate-binding mode remain unknown. Alternative nitrogenases replace molybdenum with either vanadium or iron and differ in reactivity, most prominently in the ability of vanadium nitrogenase to reduce CO to hydrocarbons. Here we report the 1.35-Å structure of vanadium nitrogenase from Azotobacter vinelandii . The 240-kDa protein contains an additional α-helical subunit that is not present in molybdenum nitrogenase. The FeV cofactor (FeVco) is a [V–7Fe–8S–C] cluster with a homocitrate ligand to vanadium. Unexpectedly, it lacks one sulfide ion compared to FeMoco, which is replaced by a bridging ligand, likely a μ-1,3-carbonate. The anion fits into a pocket within the protein that is obstructed in molybdenum nitrogenase, and its different chemical character helps to rationalize the altered chemical properties of this unique N 2 - and CO-fixing enzyme.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>28692069</pmid><doi>10.1038/nchembio.2428</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-4450
ispartof Nature chemical biology, 2017-09, Vol.13 (9), p.956-960
issn 1552-4450
1552-4469
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5563456
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 631/45/49/1141
631/535/1266
631/92/607
Ammonium
Azotobacter
Azotobacter vinelandii - enzymology
Binding sites
Biochemical Engineering
Biochemistry
Bioorganic Chemistry
Bridging
Carbonates - chemistry
Cell Biology
Chemical properties
Chemistry
Chemistry/Food Science
Clusters
Hydrocarbons
Ligands
Models, Molecular
Molybdenum
Molybdoferredoxin - chemistry
Nitrogenase
Nitrogenase - chemistry
Oxidation-Reduction
Sulfides
Vanadium
title The structure of vanadium nitrogenase reveals an unusual bridging ligand
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A45%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20structure%20of%20vanadium%20nitrogenase%20reveals%20an%20unusual%20bridging%20ligand&rft.jtitle=Nature%20chemical%20biology&rft.au=Sippel,%20Daniel&rft.date=2017-09-01&rft.volume=13&rft.issue=9&rft.spage=956&rft.epage=960&rft.pages=956-960&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/nchembio.2428&rft_dat=%3Cproquest_pubme%3E1946517210%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1946517210&rft_id=info:pmid/28692069&rfr_iscdi=true