The structure of vanadium nitrogenase reveals an unusual bridging ligand

The structure of vanadium nitrogenase reveals key differences from its counterpart molybdenum nitrogenase, particularly in the way it ligands its FeV cofactor, that help to explain the basis for the unique properties of these two nitrogenases. Nitrogenases catalyze the reduction of dinitrogen (N 2 )...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemical biology 2017-09, Vol.13 (9), p.956-960
Hauptverfasser: Sippel, Daniel, Einsle, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The structure of vanadium nitrogenase reveals key differences from its counterpart molybdenum nitrogenase, particularly in the way it ligands its FeV cofactor, that help to explain the basis for the unique properties of these two nitrogenases. Nitrogenases catalyze the reduction of dinitrogen (N 2 ) gas to ammonium at a complex heterometallic cofactor. This most commonly occurs at the FeMo cofactor (FeMoco), a [Mo–7Fe–9S–C] cluster whose exact reactivity and substrate-binding mode remain unknown. Alternative nitrogenases replace molybdenum with either vanadium or iron and differ in reactivity, most prominently in the ability of vanadium nitrogenase to reduce CO to hydrocarbons. Here we report the 1.35-Å structure of vanadium nitrogenase from Azotobacter vinelandii . The 240-kDa protein contains an additional α-helical subunit that is not present in molybdenum nitrogenase. The FeV cofactor (FeVco) is a [V–7Fe–8S–C] cluster with a homocitrate ligand to vanadium. Unexpectedly, it lacks one sulfide ion compared to FeMoco, which is replaced by a bridging ligand, likely a μ-1,3-carbonate. The anion fits into a pocket within the protein that is obstructed in molybdenum nitrogenase, and its different chemical character helps to rationalize the altered chemical properties of this unique N 2 - and CO-fixing enzyme.
ISSN:1552-4450
1552-4469
DOI:10.1038/nchembio.2428