MRI Image Processing Based on Fractal Analysis
Background: Cancer is one of the most common causes of human mortality, with about 14 million new cases and 8.2 million deaths reported in in 2012. Early diagnosis of cancer through screening allows interventions to reduce mortality. Fractal analysis of medical images may be useful for this purpose....
Gespeichert in:
Veröffentlicht in: | Asian Pacific journal of cancer prevention : APJCP 2017-01, Vol.18 (1), p.51-55 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: Cancer is one of the most common causes of human mortality, with about 14 million new cases and
8.2 million deaths reported in in 2012. Early diagnosis of cancer through screening allows interventions to reduce
mortality. Fractal analysis of medical images may be useful for this purpose. Materials and Methods: In this study,
we examined magnetic resonance (MR) images of healthy livers and livers containing metastases from colorectal
cancer. The fractal dimension and the Hurst exponent were chosen as diagnostic features for tomographic imaging using
Image J software package for image processings FracLac for applied for fractal analysis with a 120x150 pixel area.
Calculations of the fractal dimensions of pathological and healthy tissue samples were performed using the box-counting
method. Results: In pathological cases (foci formation), the Hurst exponent was less than 0.5 (the region of unstable
statistical characteristics). For healthy tissue, the Hurst index is greater than 0.5 (the zone of stable characteristics).
Conclusions: The study indicated the possibility of employing fractal rapid analysis for the detection of focal lesions
of the liver. The Hurst exponent can be used as an important diagnostic characteristic for analysis of medical images. |
---|---|
ISSN: | 1513-7368 2476-762X |
DOI: | 10.22034/APJCP.2017.18.1.51 |