Microscope objective based 4 π spectroscopic tissue scattering goniometry
The measurement of optical scattering as a function of angle, goniometry, can provide a wealth of information about tissue. The goniometry technique described here measures the intensity profile at the pupil planes of two microscope objectives with a scattering sample between them. The maximum obser...
Gespeichert in:
Veröffentlicht in: | Biomedical optics express 2017-08, Vol.8 (8), p.3828-3841 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The measurement of optical scattering as a function of angle, goniometry, can provide a wealth of information about tissue. The goniometry technique described here measures the intensity profile at the pupil planes of two microscope objectives with a scattering sample between them. The maximum observable scattering angle is extended by employing off-axis illumination. This configuration permits several advantages including: i) rapid measurement of scattering into 4
sr to characterize the entire scattering phase function in isotropic tissue, ii) sensitivity to axially asymmetric scattering from anisotropic fibrous tissue, iii) selective interrogation of small regions within spatially inhomogenous tissue, iv) concurrent measurement of scattering coefficient
, and v) measurement of wavelength dependent scattering properties via spectrally tunable source. The instrument is validated by comparing measurements of microsphere suspensions to the Mie scattering solution. Instrument capabilities are demonstrated with samples of rat brain and mouse eye tissues. |
---|---|
ISSN: | 2156-7085 2156-7085 |
DOI: | 10.1364/BOE.8.003828 |