Diversity of aromatic hydroxylating dioxygenase genes in mangrove microbiome and their biogeographic patterns across global sites

Aromatic hydrocarbons (AH), such as polycyclic aromatic hydrocarbons, are compounds largely found in nature. Aromatic‐ring‐hydroxylating dioxygenases (ARHD) are proteins involved in AH degradation pathways. We used ARHD functional genes from an oil‐impacted mangrove area and compared their diversity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MicrobiologyOpen (Weinheim) 2017-08, Vol.6 (4), p.n/a
Hauptverfasser: Sousa, Sanderson T. P., Cabral, Lucélia, Lacerda Júnior, Gileno Vieira, Oliveira, Valéria M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aromatic hydrocarbons (AH), such as polycyclic aromatic hydrocarbons, are compounds largely found in nature. Aromatic‐ring‐hydroxylating dioxygenases (ARHD) are proteins involved in AH degradation pathways. We used ARHD functional genes from an oil‐impacted mangrove area and compared their diversity with other sites around the world to understand the ARHD biogeographic distribution patterns. For this, a comprehensive database was established with 166 operational protein families (OPFs) from 1,758 gene sequences obtained from 15 different sites worldwide, of which twelve are already published studies and three are unpublished. Based on a deduced ARHD peptide sequences consensus phylogeny, we examined trends and divergences in the sequence phylogenetic clustering from the different sites. The taxonomic affiliation of the OPF revealed that Pseudomonas, Streptomyces, Variovorax, Bordetella and Rhodococcus were the five most abundant genera, considering all sites. The functional diversity analysis showed the enzymatic prevalence of benzene 1,2‐dioxygenase, 3‐phenylpropionate dioxygenase and naphthalene 1,2‐dioxygenase, in addition to 10.98% of undefined category ARHDs. The ARHD gene correlation analysis among different sites was essentially important to gain insights on spatial distribution patterns, genetic congruence and ecological coherence of the bacterial groups found. This work revealed the genetic potential from the mangrove sediment for AH biodegradation and a considerable evolutionary proximity among the dioxygenase OPFs found in Antarctica and South America sites, in addition to high level of endemism in each continental region. Aromatic‐ring‐hydroxylating dioxygenases (ARHD) are proteins involved in Aromatic Hydrocarbon degradation pathways. We used ARHD functional genes and assessed their diversity and biogeographic distribution patterns.
ISSN:2045-8827
2045-8827
DOI:10.1002/mbo3.490