Biosynthetic PCL-graft-Collagen Bulk Material for Tissue Engineering Applications

Biosynthetic materials have emerged as one of the most exciting and productive fields in polymer chemistry due to their widespread adoption and potential applications in tissue engineering (TE) research. In this work, we report the synthesis of a poly(ε-caprolactone)- -collagen (PCL- -Coll) copolyme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2017-06, Vol.10 (7), p.693
Hauptverfasser: Gentile, Piergiorgio, McColgan-Bannon, Kegan, Gianone, Nicolò Ceretto, Sefat, Farshid, Dalgarno, Kenneth, Ferreira, Ana Marina
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biosynthetic materials have emerged as one of the most exciting and productive fields in polymer chemistry due to their widespread adoption and potential applications in tissue engineering (TE) research. In this work, we report the synthesis of a poly(ε-caprolactone)- -collagen (PCL- -Coll) copolymer. We combine its good mechanical and biodegradable PCL properties with the great biological properties of type I collagen as a functional material for TE. PCL, previously dissolved in dimethylformamide/dichloromethane mixture, and reacted with collagen using carbodiimide coupling chemistry. The synthesised material was characterised physically, chemically and biologically, using pure PCL and PCL/Coll blend samples as control. Infrared spectroscopy evidenced the presence of amide I and II peaks for the conjugated material. Similarly, XPS evidenced the presence of C-N and N-C=O bonds (8.96 ± 2.02% and 8.52 ± 0.63%; respectively) for PCL- -Coll. Static contact angles showed a slight decrease in the conjugated sample. However, good biocompatibility and metabolic activity was obtained on PCL- -Coll films compared to PCL and blend controls. After 3 days of culture, fibroblasts exhibited a spindle-like morphology, spreading homogeneously along the PCL- -Coll film surface. We have engineered a functional biosynthetic polymer that can be processed by electrospinning.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma10070693