Trigonal curves and algebro-geometric solutions to soliton hierarchies II
This is a continuation of a study on Riemann theta function representations of algebro-geometric solutions to soliton hierarchies. In this part, we straighten out all flows in soliton hierarchies under the Abel–Jacobi coordinates associated with Lax pairs, upon determining the Riemann theta function...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2017-07, Vol.473 (2203), p.20170233-20170233 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This is a continuation of a study on Riemann theta function representations of algebro-geometric solutions to soliton hierarchies. In this part, we straighten out all flows in soliton hierarchies under the Abel–Jacobi coordinates associated with Lax pairs, upon determining the Riemann theta function representations of the Baker–Akhiezer functions, and generate algebro-geometric solutions to soliton hierarchies in terms of the Riemann theta functions, through observing asymptotic behaviours of the Baker–Akhiezer functions. We emphasize that we analyse the four-component AKNS soliton hierarchy in such a way that it leads to a general theory of trigonal curves applicable to construction of algebro-geometric solutions of an arbitrary soliton hierarchy. |
---|---|
ISSN: | 1364-5021 1471-2946 |
DOI: | 10.1098/rspa.2017.0233 |