Trigonal curves and algebro-geometric solutions to soliton hierarchies II

This is a continuation of a study on Riemann theta function representations of algebro-geometric solutions to soliton hierarchies. In this part, we straighten out all flows in soliton hierarchies under the Abel–Jacobi coordinates associated with Lax pairs, upon determining the Riemann theta function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2017-07, Vol.473 (2203), p.20170233-20170233
1. Verfasser: Ma, Wen-Xiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This is a continuation of a study on Riemann theta function representations of algebro-geometric solutions to soliton hierarchies. In this part, we straighten out all flows in soliton hierarchies under the Abel–Jacobi coordinates associated with Lax pairs, upon determining the Riemann theta function representations of the Baker–Akhiezer functions, and generate algebro-geometric solutions to soliton hierarchies in terms of the Riemann theta functions, through observing asymptotic behaviours of the Baker–Akhiezer functions. We emphasize that we analyse the four-component AKNS soliton hierarchy in such a way that it leads to a general theory of trigonal curves applicable to construction of algebro-geometric solutions of an arbitrary soliton hierarchy.
ISSN:1364-5021
1471-2946
DOI:10.1098/rspa.2017.0233