Identical Active Sites in Hydroxynitrile Lyases Show Opposite Enantioselectivity and Reveal Possible Ancestral Mechanism

Evolutionarily related hydroxynitrile lyases from rubber tree (HbHNL) and from Arabidopsis thaliana (AtHNL) follow different catalytic mechanisms with opposite enantioselectivity toward mandelonitrile. We hypothesized that the HbHNL-like mechanism evolved from an enzyme with an AtHNL-like mechanism....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2017-06, Vol.7 (6), p.4221-4229
Hauptverfasser: Jones, Bryan J, Bata, Zsófia, Kazlauskas, Romas J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Evolutionarily related hydroxynitrile lyases from rubber tree (HbHNL) and from Arabidopsis thaliana (AtHNL) follow different catalytic mechanisms with opposite enantioselectivity toward mandelonitrile. We hypothesized that the HbHNL-like mechanism evolved from an enzyme with an AtHNL-like mechanism. We created ancestor-like composite active sites in each scaffold to elucidate how this transition may have occurred. Surprisingly, a composite active site in HbHNL maintained (S)-selectivity, while the identical set of active site residues in AtHNL maintained (R)-selectivity. Composite active-site mutants that are (S)-selective without the Lys236 and Thr11 that are required for the classical (S)-HNL mechanism suggest a new mechanism. Modeling suggested a possibility for this new mechanism that does not exist in modern enzymes. Thus, the last common ancestor of HbHNL and AtHNL may have used an extinct mechanism, not the AtHNL-like mechanism. Multiple mechanisms are possible with the same catalytic residues and residues outside the active site strongly influence the mechanism and enantioselectivity.
ISSN:2155-5435
2155-5435
DOI:10.1021/acscatal.7b01108