The integrated stress response in hypoxia-induced diffuse white matter injury

Currently no treatments exist for preterm infants with diffuse white matter injury (DWMI) caused by hypoxia. Due to improved care of preterm neonates and increased recognition by advanced imaging techniques, the prevalence of DWMI is increasing. A better understanding of the pathophysiology of DWMI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2017-08, Vol.37 (31), p.7465-7480
Hauptverfasser: Clayton, Benjamin Ll, Huang, Aaron, Kunjamma, Rejani B, Solanki, Ani, Popko, Brian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Currently no treatments exist for preterm infants with diffuse white matter injury (DWMI) caused by hypoxia. Due to improved care of preterm neonates and increased recognition by advanced imaging techniques, the prevalence of DWMI is increasing. A better understanding of the pathophysiology of DWMI is therefore of critical importance. The integrated stress response (ISR), a conserved eukaryotic response to myriad stressors including hypoxia, may play a role in hypoxia-induced DWMI and may represent a novel target for much needed therapies. In this study we utilize and hypoxic models of DWMI to investigate whether the ISR is involved in DWMI. We demonstrate that hypoxia activates the ISR in primary mouse oligodendrocyte precursor cells (OPCs) and that genetically inhibiting the ISR in differentiating OPCs increases their susceptibility to hypoxia. We also show that a well-established mild chronic hypoxia (MCH) mouse model and a new severe acute hypoxia (SAH) mouse model of DWMI activates the initial step of the ISR. Nonetheless, genetic inhibition of the ISR has no detectable effect on either MCH or SAH-induced DWMI. In addition, we demonstrate that genetic enhancement of the ISR does not ameliorate MCH or SAH-induced DWMI. These studies suggest that while the ISR protects OPCs from hypoxia , it does not appear to play a major role in either MCH or SAH-induced DWMI and is therefore not a likely target for therapies aimed at improving neurological outcome in preterm neonates with hypoxia-induced DWMI. Diffuse white matter injury (DWMI) caused by hypoxia is a leading cause of neurological deficits following premature birth. An increased understanding of the pathogenesis of this disease is critical. The integrated stress response (ISR) is activated by hypoxia and protects oligodendrocyte lineage cells in other disease models. This has led to an interest in the potential role of the ISR in DWMI. Here we examine the ISR in hypoxia-induced DWMI and show that while the ISR protects oligodendrocyte lineage cells from hypoxia , genetic inhibition or enhancement of the ISR has no effect on hypoxia-induced DWMI suggesting that the ISR does not play a major role in, and is not a likely therapeutic target for, DWMI.
ISSN:0270-6474
1529-2401
1529-2401
DOI:10.1523/JNEUROSCI.2738-16.2017