Developing Fluorogenic Riboswitches for Imaging Metabolite Concentration Dynamics in Bacterial Cells

Genetically encoded small-molecule sensors are important tools for revealing the dynamics of metabolites and other small molecules in live cells over time. We recently developed RNA-based sensors that exhibit fluorescence in proportion to a small-molecule ligand. One class of these RNA-based sensors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods in enzymology 2016, Vol.572, p.315-333
Hauptverfasser: Litke, J L, You, M, Jaffrey, S R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Genetically encoded small-molecule sensors are important tools for revealing the dynamics of metabolites and other small molecules in live cells over time. We recently developed RNA-based sensors that exhibit fluorescence in proportion to a small-molecule ligand. One class of these RNA-based sensors are termed Spinach riboswitches. These are RNAs that are based on naturally occurring riboswitches, but have been fused to the Spinach aptamer. The resulting RNA is a fluorogenic riboswitch, producing fluorescence upon binding the cognate small-molecule analyte. Here, we describe how to design and optimize these sensors by adjusting critical sequence elements, guided by structural insights from the Spinach aptamer. We provide a stepwise procedure to characterize sensors in vitro and to express sensors in bacteria for live-cell imaging of metabolites. Spinach riboswitch sensors offer a simple method for fluorescence measurement of a wide range of metabolites for which riboswitches exist, including nucleotides and their derivatives, amino acids, cofactors, cations, and anions.
ISSN:0076-6879
1557-7988
DOI:10.1016/bs.mie.2016.03.021