Mechanosensing is critical for axon growth in the developing brain

Much of what is known about nervous system development is based on chemical signaling. In this study, Koser et al. demonstrate that developing neurons also respond to mechanical signals and that local tissue stiffness is a regulator of neuronal growth in vivo . During nervous system development, neu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2016-12, Vol.19 (12), p.1592-1598
Hauptverfasser: Koser, David E, Thompson, Amelia J, Foster, Sarah K, Dwivedy, Asha, Pillai, Eva K, Sheridan, Graham K, Svoboda, Hanno, Viana, Matheus, Costa, Luciano da F, Guck, Jochen, Holt, Christine E, Franze, Kristian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Much of what is known about nervous system development is based on chemical signaling. In this study, Koser et al. demonstrate that developing neurons also respond to mechanical signals and that local tissue stiffness is a regulator of neuronal growth in vivo . During nervous system development, neurons extend axons along well-defined pathways. The current understanding of axon pathfinding is based mainly on chemical signaling. However, growing neurons interact not only chemically but also mechanically with their environment. Here we identify mechanical signals as important regulators of axon pathfinding. In vitro , substrate stiffness determined growth patterns of Xenopus retinal ganglion cell axons. In vivo atomic force microscopy revealed a noticeable pattern of stiffness gradients in the embryonic brain. Retinal ganglion cell axons grew toward softer tissue, which was reproduced in vitro in the absence of chemical gradients. To test the importance of mechanical signals for axon growth in vivo , we altered brain stiffness, blocked mechanotransduction pharmacologically and knocked down the mechanosensitive ion channel piezo1. All treatments resulted in aberrant axonal growth and pathfinding errors, suggesting that local tissue stiffness, read out by mechanosensitive ion channels, is critically involved in instructing neuronal growth in vivo .
ISSN:1097-6256
1546-1726
DOI:10.1038/nn.4394