Overexpressed eNOS upregulates SIRT1 expression and protects mouse pancreatic β cells from apoptosis
Loss of sirtuin 1 (SIRT1) activity may be associated with metabolic diseases, including diabetes. The aim of the present study was to investigate the potential effects of overexpressed endothelial nitric oxide synthase (eNOS) on cell proliferation and apoptosis with SIRT1 activation in the Min6 mous...
Gespeichert in:
Veröffentlicht in: | Experimental and therapeutic medicine 2017-08, Vol.14 (2), p.1727-1731 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Loss of sirtuin 1 (SIRT1) activity may be associated with metabolic diseases, including diabetes. The aim of the present study was to investigate the potential effects of overexpressed endothelial nitric oxide synthase (eNOS) on cell proliferation and apoptosis with SIRT1 activation in the Min6 mouse pancreatic β cell line. A pcDNA3.0-eNOS plasmid was constructed and transfected into Min6 cells for 24 h prior to harvesting. eNOS expression was validated and SIRT1 expression was detected following plasmid transfection using reverse transcription-quantitative polymerase chain reaction and western blot analysis, which demonstrated that the expression levels of eNOS and SIRT1 were significantly upregulated. Furthermore, the cell proliferation and cell apoptosis of the Min6 cells were evaluated, using a cell counting kit-8 assay and flow cytometry, respectively. The results suggested that overexpressed eNOS promoted cell proliferation and inhibited cell apoptosis in Min6 cells. The interaction between eNOS and SIRT1 was explored through co-immunoprecipitation, and it found that there was a strong interaction between eNOS and SIRT1. In conclusion, overexpressed eNOS may induce SIRT1 activation, which is implied to play a protective role in Min6 cells, and eNOS may be a new therapeutic target for diseases such as type 2 diabetes. |
---|---|
ISSN: | 1792-0981 1792-1015 |
DOI: | 10.3892/etm.2017.4669 |