MicroRNA-590-3p enhances the radioresistance in glioblastoma cells by targeting LRIG1
microRNA (miR)-590 has been found to serve potential roles in cancer development; however, the expression and function of miR-590 in human gliomas remains to be elucidated. The present study aimed to investigate the expression of miR-590 in human glioma tissues and radioresistant human glioblastoma...
Gespeichert in:
Veröffentlicht in: | Experimental and therapeutic medicine 2017-08, Vol.14 (2), p.1818-1824 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | microRNA (miR)-590 has been found to serve potential roles in cancer development; however, the expression and function of miR-590 in human gliomas remains to be elucidated. The present study aimed to investigate the expression of miR-590 in human glioma tissues and radioresistant human glioblastoma cells (U251R), and to determine the effect and related molecular mechanism of miR-590-3p on the radiosensitivity of U251R cells in vitro. The results from reverse transcription-quantitative polymerase chain reaction indicated that miR-590-3p was upregulated in human glioma tissues and radioresistant human glioblastoma cells, and that miR-590-3p expression was higher in high grade than in low grade gliomas. In vitro experiments revealed that the miR-590-3p inhibitor enhanced the radiosensitivity of U251R cells by suppressing cell viability, decreasing colony formation capacity and increasing cell apoptosis rate, as demonstrated by MTT, colony formation and flow cytometry analyses. A luciferase reporter assay demonstrated that leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1) was a direct target of miR-590-3p. Furthermore, it was demonstrated that the effect of miR-590-3p suppression on cell viability, colony formation capacity and cell apoptosis rate was attenuated by the knockdown of LRIG1 in the U251R cells. In conclusion, the present study revealed that miR-590-3p was upregulated in human glioma tissues and radioresistant human glioblastoma cells, and miR-590-3p contributes to the radioresistance of human glioblastoma cells by directly targeting LRIG1. These findings may provide potential therapeutic strategies to prevent radioresistance in human gliomas. |
---|---|
ISSN: | 1792-0981 1792-1015 |
DOI: | 10.3892/etm.2017.4697 |