A marine bio-functional lipid, fucoxanthinol, attenuates human colorectal cancer stem-like cell tumorigenicity and sphere formation

Fucoxanthinol (FuOH), an intestinal metabolite form of fucoxanthin (Fx) isolated from marine algae, is known to possess multiple health benefits, such as prevention of human cancer. However, there is little available information about the effects of FuOH on colorectal cancer stem cells (CCSCs) and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Clinical Biochemistry and Nutrition 2017, Vol.61(1), pp.25-32
Hauptverfasser: Terasaki, Masaru, Maeda, Hayato, Miyashita, Kazuo, Tanaka, Takuji, Miyamoto, Shingo, Mutoh, Michihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fucoxanthinol (FuOH), an intestinal metabolite form of fucoxanthin (Fx) isolated from marine algae, is known to possess multiple health benefits, such as prevention of human cancer. However, there is little available information about the effects of FuOH on colorectal cancer stem cells (CCSCs) and their contribution to drug resistance, tumorigenesis and cancer recurrence. In the present study, we investigated the anti-proliferative effect of FuOH on two putative CCSCs, CD44high/EpCAMhigh cells and colonospheres (Csps) formed by HT-29 human colorectal cancer cells, and the suppressive effects of FuOH on the growth of xenografted tumor. FuOH significantly inhibited the growth of CD44high/EpCAMhigh cells and disintegrated Csps and induced many condensed chromatin bodies in the cells in a dose-dependent manner. The IC50 value of FuOH for these changes in Csps was 1.8 µM. FuOH down-regulated pAkt (Ser473), PPARβ/δ and PPARγ in Csps. These proteins play a critical role in cell proliferation, the cell cycle, metastasis and extracellular adhesion. Ten days after the administration of FuOH (5 mg/kg body weight) to the mice every 3 to 4 days significantly suppressed the Csps tumorigenesis when compared to the untreated control mice. Our results suggest that FuOH could be used as a chemopreventive agent against human CCSC.
ISSN:0912-0009
1880-5086
DOI:10.3164/jcbn.16-112